Skip to main content

Nitric Oxide and Hydrogen Peroxide in Root Organogenesis

  • Chapter
  • First Online:

Abstract

Nitric oxide (NO) and reactive oxygen species (ROS) are central messengers in the way plants respond to environmental and hormonal stimuli and for the configuration of root architecture. ROS determine the boundaries between the meristem and cell elongation zone of the primary root and act in concert with NO to promote lateral root primordia maturation and epidermal cell differentiation. Overall, the capacity of roots to acquire nutrients such as phosphate, nitrate, and sulfate is determined by NO and ROS via their effects on root hair development and expression of genes for improving nutritional responses or orchestrating the activities of proteins of all major hormonal pathways, including auxin, ethylene, jasmonic acid, brassinosteroids, and abscisic acid. Specifically, ROS target phosphatases and transcription factors of two main families, MYB and BHLH, these later being probably recruited by the mediator complex to the promoters of genes for transcription. Here, we review the information about the functions and mechanisms of NO and ROS modulated-root organogenesis, including growth, patterning, and differentiation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Airaki M, Leterrier M, Valderrama R, Chaki M, Begara-Morales JC, Barroso JB, del Río LA, Palma JM, Corpas FJ (2015) Spatial and temporal regulation of the metabolism of reactive oxygen and nitrogen species during the early development of pepper (Capsicum annuum) seedlings. Ann Bot 116:679–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Bai S, Li M, Yao T, Wang H, Zhang Y, Xiao L, Wang J, Zhang Z, Hu Y, Liu W, He Y (2012) Nitric oxide restrain root growth by DNA damage induced cell cycle arrest in Arabidopsis thaliana. Nitric Oxide 26:54–60

    Article  CAS  PubMed  Google Scholar 

  • Bhosale R, Giri J, Pandey BK, Giehl RFH, Hartmann A, Traini R, Truskina J, Leftley N, Hanlon M, Swarup K, Rashed A, Voß U, Alonso J, Stepanova A, Yun J, Ljung K, Brown KM, Lynch JP, Dolan L, Vernoux T, Bishopp A, Wells D, von Wirén N, Bennett MJ, Swarup R (2018) A mechanistic framework for auxin dependent Arabidopsis root hair elongation to low external phosphate. Nat Commun 9:1409

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Campos-Cuevas JC, Pelagio-Flores R, Raya-González J, Méndez-Bravo A, Ortiz-Castro R, López-Bucio J (2008) Tissue culture of Arabidopsis thaliana explants reveals a stimulatory effect of alkamides on adventitious root formation and nitric accumulation. Plant Sci 174:165–173

    Article  CAS  Google Scholar 

  • Cederholm H, Lyer-Pascuzzi AS, Benfey P (2012) Patterning the primary root in Arabidopsis. WIREs Dev Biol 1:675–691

    Article  CAS  Google Scholar 

  • Chen YH, Kao CH (2012) Calcium is involved in nitric oxide- and auxin-induced lateral root formation in rice. Protoplasma 249:187–195

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Gu Q, Yu X, Huang L, Xu S, Wang R, Shen W, Shen W (2018) Hydrogen peroxide acts downstream of melatonin to induce lateral root formation. Ann Bot 121:1127–1136

    Article  PubMed  PubMed Central  Google Scholar 

  • Corpas FJ, Barroso JB (2015) Functions of nitric oxide (NO) in roots during development and under adverse stress conditions. Plants (Basel) 22:240–252

    Article  CAS  Google Scholar 

  • Corpas FJ, Gupta DK, Palma JM (2015) Production sites of reactive oxygen species (ROS) in organelles from plant cells. In: Gupta DK, Palma JM, Corpas FJ (eds) Reactive oxygen species and oxidative damage in plants under stress. Springer, Basel, pp 1–19

    Google Scholar 

  • Correa-Aragunde N, Graziano M, Lamattina L (2004) Nitric oxide plays a central role in determining lateral root development in tomato. Planta 218:900–905

    Article  CAS  PubMed  Google Scholar 

  • De Tullio MC, Jiang K, Feldman LJ (2010) Redox regulation of root apical meristem organization: connecting root development to its environment. Plant Physiol Biochem 45:328–336

    Article  CAS  Google Scholar 

  • Dindas J, Scherzer S, Roelfsema MRG, von Meyer K, Müller HM, Al-Rasheid KAS, Palme K, Dietrich P, Becker D, Bennett MJ, Hedrich R (2018) AUX1-mediated root hair auxin influx governs SCF(TIR1/AFB)-type Ca(2+) signaling. Nat Commun 9:1174

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dolzblasz A, Gola EM, Sokołowska K, Smakowska-Luzan E, Twardawska A, Janska H (2018) Impairment of meristem proliferation in plants lacking the mitochondrial protease AtFTSH4. Int J Mol Sci 19:853

    Article  PubMed Central  CAS  Google Scholar 

  • Domingos P, Prado AM, Wong A, Gehring C, Feijo JA (2015) Nitric oxide: a multitasked signaling gas in plants. Mol Plant 8:506–520

    Article  CAS  PubMed  Google Scholar 

  • Du Y, Scheres B (2018) Lateral root formation and the multiple roles of auxin. J Exp Bot 69:155–167

    Article  CAS  PubMed  Google Scholar 

  • Efroni I, Mello A, Nawy T, Ip PL Rahni R, DelRose N, Powers A, Satija R, Birnbaum KD (2016) Root regeneration triggers an embryo-like sequence guided by hormonal interactions. Cell 165:1721–1733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernández-Marcos M, Sanz L, Lewis DR, Muday GK, Lorenzo O (2011) Nitric oxide causes root apical mersitem defects and growth inhibition while reducing PIN-FORMED 1 (PIN1)-dependent acropetal auxin transport. Proc Natl Acad Sci U S A 108:18506–18511

    Article  PubMed  PubMed Central  Google Scholar 

  • Fernández-Marcos M, Desvoyes B, Manzano C, Liberman LM, Benfey PN, del Pozo JC, Gutierrez C (2017) Control of Arabidopsis lateral root primordium boundaries by MYB36. New Phytol 213:105–112

    Article  PubMed  CAS  Google Scholar 

  • Flores T, Todd CD, Tovar-Mendez A, Dhanoa PK, Correa-Aragunde N, Hoyos ME, Brownfield DM, Mullen RT, Lamattina L, Polacco JC (2008) Arginase-negative mutants of Arabidopsis exhibit increased nitric oxide signaling in root development. Plant Physiol 147:1936–1946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foreman J, Demidchik V, Bothwell JH, Mylona P, Miedema H, Torres MA, Linstead P, Costa S, Brownlee C, Jones JD, Davies JM, Dolan L (2003) Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422:442–446

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH, Ruban AV, Noctor G (2017) Viewing oxidative stress through the lens of oxidative signalling rather than damage. Biochem J 474:877–883

    Article  CAS  PubMed  Google Scholar 

  • Freschi L (2013) Nitric oxide and phytohormone interactions: current status and perspectives. Front Plant Sci 4:398

    Article  PubMed  PubMed Central  Google Scholar 

  • Gutiérrez-Alanís D, Ojeda-Rivera JO, Yong-Villalobos L, Cardenas-Torres L, Herrera-Estrella L (2018) Adaptation to phosphate scarcity: tips from Arabidopsis roots. Trend Plant Sci 23:721–730

    Article  CAS  Google Scholar 

  • Ha JH, Kim JH, Kim SG, Sim HS, Lee G, Halitschke R, Baldwin IT, Kim JI, Park CM (2018) Shoot phytochrome B modulates reactive oxygen species homeostasis in roots via abscisic acid signaling in Arabidopsis. Plant J 94:790–798

    Article  CAS  PubMed  Google Scholar 

  • Hernández-Barrera A, Velarde-Buendía A, Zepeda I, Sánchez F, Quinto C, Sánchez-López R, Cheung AY, Wu HM, Cardenas L (2015) Hyper, a hydrogen peroxide sensor, indicates the sensitivity of the Arabidopsis root elongation zone to aluminum treatment. Sensors 15:855–867

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Heyman J, Cools T, Canher B, Shavialenka S, Traas J, Vercauteren I, Van den Daele H, Persiau G, De Jaeger G, Sugimoto G, De Veylder L (2016) The heterodimeric transcription factor complex ERF115-PAT1 grants regeneration competence. Nat Plant 2:16165

    Article  CAS  Google Scholar 

  • Kolbert Z, Bartha B, Erdei L (2008) Exogenous auxin-induced NO synthesis in nitrate reductase-associated in Arabidopsis thaliana root primordia. J Plant Physiol 165:967–975

    Article  CAS  PubMed  Google Scholar 

  • Kong X, Tian H, Yu Q, Zhang F, Wang R, Gao S, Xu W, Liu J, Shani E, Fu C, Zhou G, Zhang L, Zhang X, Ding Z (2018) PHB3 maintains root stem cell niche identity through ROS-responsive AP2/ERF transcription factors in Arabidopsis. Cell Rep 22:1350–1363

    Article  CAS  PubMed  Google Scholar 

  • Kwon E, Feechan A, Yun BW, Hwang BH, Pallas JA, Kang JG, Loake GJ (2012) AtGSNOR1 function is required for multiple developmental programs in Arabidopsis. Planta 236:887–900

    Article  CAS  PubMed  Google Scholar 

  • Lanteri ML, Pagnussat GC, Lamattina L (2006) Calcium and calcium-dependent protein kinases are involved in nitric oxide- and auxin-induced adventitious root formation in cucumber. J Exp Bot 57:1341–1351

    Article  CAS  PubMed  Google Scholar 

  • Lee HJ, Ha JH, Kim SG, Choi HK, Kim ZH, Han YJ, Kim JI, Oh Y, Fragoso V, Shin K, Hyeon T, Choi HG, Oh KH, Baldwin IT, Park CM (2016) Stem-piped light activates phytochrome B to trigger light responses in Arabidopsis thaliana roots. Sci Signal 9:ra106

    Article  PubMed  CAS  Google Scholar 

  • Liao WB, Zhang ML, Huang GB, Yu JH (2012) Ca2+ and CaM are involved in NO- and H2O2-induced adventitious root development in marigold. J Plant Growth Regul 31:253–264

    Article  CAS  Google Scholar 

  • Lin CY, Huang LY, Chi WC, Huang TL, Kakimoto T, Tsai CR, Huang HJ (2015) Pathways involved in vanadate-induced root hair formation in Arabidopsis. Physiol Plant 153:137–148

    Article  CAS  PubMed  Google Scholar 

  • Liu M, Zhang H, Fang X, Zhang Y, Jin C (2018) Auxin acts downstream of ethylene and nitric oxide to regulate magnesium deficiency-induced root hair development in Arabidopsis thaliana. Plant Cell Physiol 59:1452–1465

    PubMed  Google Scholar 

  • Lombardo MC, Graziano M, Polacco JC, Lamattina L (2006) Nitric oxide functions as a positive regulator of root hair development. Plant Signal Behav 1:28–33

    Article  PubMed  PubMed Central  Google Scholar 

  • López-Bucio J, Cruz-Ramírez A, Herrera-Estrella L (2003) The role of nutrient availability in regulating root architecture. Curr Opin Plant Biol 6:280–287

    Article  PubMed  CAS  Google Scholar 

  • López-Bucio J, Acevedo-Hernández G, Molina-Torres J, Herrera-Estrella L (2006) Novel signals for plant development. Curr Opin Plant Biol 9:523–529

    Article  PubMed  CAS  Google Scholar 

  • Lv B, Tian H, Zhang F, Liu J, Lu S, Bai M, Li C, Ding Z (2018) Brassinosteroids regulate root growth by controlling reactive oxygen species homeostasis and dual effect on ethylene synthesis in Arabidopsis. PLoS Genet 14:e1007144

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ma F, Wang L, Li J, Samma MK, Xie Y, Wang R, Wang J, Zhang J, Shen W (2014) Interaction between HY1 and H2O2 in auxin-induced lateral root formation in Arabidopsis. Plant Mol Biol 85:49–61

    Article  CAS  PubMed  Google Scholar 

  • Mabuchi K, Maki H, Itaya T, Suzuki T, Nomoto M, Sakaoka S, Morikami A, Higashiyama T, Tada Y, Busch W, Tsukagoshi H (2018) MYB30 links ROS signaling, root cell elongation, and plant immune responses. Proc Natl Acad Sci U S A 115:E4710–E4719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mangano S, Denita-Juarez SP, Choi HS, Marzol E, Hwang Y, Ranocha P, Velasquez SM, Borassi C, Barberini ML, Aptekmann AA, Muschietti JP, Nadra AD, Dunand C, Cho HT, Estevez JM (2017) The molecular link between auxin and ROS-controlled root hair growth. Proc Natl Acad Sci U S A 114:5289–5294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mangano S, SP D-J, Marzol E, Borassi C, Estevez JM (2018) High auxin and high phosphate impact on RSL2 expression and ROS-homeostasis linked to root hair growth in Arabidopsis thaliana. Front Plant Sci 9:1164

    Article  PubMed  PubMed Central  Google Scholar 

  • Manzano C, Pallero-Baena M, Casimiro I, De Rybel B, Orman-Ligeza B, Van Isterdael G, Beeckman T, Draye X, Casero P, Del Pozo JC (2014) The emerging role of reactive oxygen species signaling during lateral root development. Plant Physiol 165:1105–1119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marino D, Dunand C, Puppo A, Pauly N (2012) A burst of plant NADPH oxidases. Trend Plant Sci 17:9–15

    Article  CAS  Google Scholar 

  • Martínez-de la Cruz E, García-Ramírez E, Vázquez-Ramos JM, Reyes de la Cruz H, López-Bucio J (2015) Auxins differentially regulate root system architecture and cell cycle protein levels in maize seedlings. J Plant Physiol 176:147–156

    Article  PubMed  CAS  Google Scholar 

  • Méndez-Bravo A, Raya-González J, Herrera-Estrella L, López-Bucio J (2010) Nitric oxide is involved in alkamide-induced lateral root development in Arabidopsis. Plant Cell Physiol 51:1612–1626

    Article  PubMed  CAS  Google Scholar 

  • Méndez-Bravo A, Calderón-Vázquez C, Ibarra-Laclette E, Raya-González J, Ramírez-Chavez E, Molina-Torres J, Guevara-García A, López-Bucio J, Herrera-Estrella L (2011) Alkamides actívate jasmonic acid biosynthesis and signaling pathways and confer resistance to Botrytis cinerea in Arabidopsis thaliana. PLoS One 6(11):e27251

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mittler R (2017) ROS are good. Trend Plant Sci 22:11–19

    Article  CAS  Google Scholar 

  • Mo M, Yokawa K, Wan Y, Baluska F (2015) How and why do root apices sense light under the soil surface? Front Plant Sci 6:775

    PubMed  PubMed Central  Google Scholar 

  • Morquecho-Contreras A, Mendez-Bravo A, Pelagio-Flores R, Raya-Gonzalez J, Ortiz-Castro R, López-Bucio J (2010) Characterization of drr1, an alkamide resistant mutant of Arabidopsis reveals an important role for small lipid amides in lateral root development and plant senescence. Plant Physiol 152:1659–1673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nowicka AM, Kowalczyk A, Sek S, Stojek Z (2013) Oxidation of DNA followed by conformational change after OH radical attack. Anal Chem 85:355–361

    Article  CAS  PubMed  Google Scholar 

  • Orman-Ligeza B, Parizot B, de Rycke R, Fernandez A, Himschoot E, Van Breusegem F, Bennett MJ, Périlleux C, Beeckman T, Draye X (2016) RBOH-mediated ROS production facilitates lateral root emergence in Arabidopsis. Development 143:3328–3339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ortiz-Castro R, Pelagio-Flores R, Méndez Bravo A, Ruíz Herrera LF, Campos-García J, López-Bucio J (2014) Pyocyanin, a virulence factor produced by Pseudomonas aeruginosa, alters root development through reactive oxygen species and ethylene signaling in Arabidopsis. Mol Plant Microbe Interact 27:364–378

    Article  CAS  PubMed  Google Scholar 

  • Pelagio-Flores R, Ortíz-Castro R, Méndez-Bravo A, Macías-Rodríguez L, López-Bucio J (2011) Serotonin, a tryptophan-derived signal conserved in plants and animals, regulates root system architecture probably acting as a natural auxin inhibitor in Arabidopsis thaliana. Plant Cell Physiol 52:490–508

    Article  CAS  PubMed  Google Scholar 

  • Pelagio-Flores R, Muñoz-Parra E, Ortiz-Castro R, López-Bucio J (2012) Melatonin regulates Arabidopsis root system architecture likely acting independently of auxin signaling. J Pineal Res 53:279–288

    Article  CAS  PubMed  Google Scholar 

  • Pelagio-Flores R, Ruiz-Herrera LF, López-Bucio J (2016) Serotonin modulates Arabidopsis root growth via changes in reactive oxygen species and jasmonic acid-ethylene signaling. Physiol Plant 158:92–105

    Article  CAS  PubMed  Google Scholar 

  • Qu Y, Wang Q, Guo J, Wang P, Song P, Jia Q, Zhang X, Kudla J, Zhang W, Zhang Q (2017) Peroxisomal CuAOζ and its product H2O2 regulate the distribution of auxin and IBA-dependent lateral root development in Arabidopsis. J Exp Bot 68:4851–4867

    Article  CAS  PubMed  Google Scholar 

  • Raya-González J, Ortiz-Castro R, Ruíz-Herrera LF, Kazan K, López-Bucio J (2014) PHYTOCHROME AND FLOWERING TIME1/MEDIATOR25 regulates lateral root formation via auxin signaling in Arabidopsis. Plant Physiol 165:880–894

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Raya-González J, López-Bucio JS, Prado-Rodríguez JC, Ruiz-Herrera LF, Guevara-García AA, López-Bucio J (2017) The MEDIATOR genes MED12 and MED13 control Arabidopsis root system configuration influencing sugar and auxin responses. Plant Mol Biol 95:141–156

    Article  PubMed  CAS  Google Scholar 

  • Rogers ED, Benfey PN (2015) Regulation of plant root system architecture: implications for crop advancement. Curr Opin Biotechnol 32:93–98

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Herrera LF, Shane MW, López-Bucio J (2015) Nutritional regulation of root development. WIREs Dev Biol 4:431–443

    Article  CAS  Google Scholar 

  • Salazar-Henao JE, Vélez-Bermúdez IC, Schmidt W (2016) The regulation and plasticity of root hair patterning and morphogenesis. Development 143:1848–1858

    Article  CAS  PubMed  Google Scholar 

  • Sanz L, Fernández-Marcos M, Modrego A, Lewis DR, Muday GK, Pollmann S, Dueñas M, Santos-Buelga C, Lorenzo O (2014) Nitric oxide plays a role in stem cell niche homeostasis through its interaction with auxin. Plant Physiol 166:1972–1984

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sanz L, Albertos P, Mateos I, Sánchez-Vicente I, Lechón T, Fernández-Marcos M, Lorenzo O (2015) Nitric oxide (NO) and phytohormones crosstalk during early plant development. J Exp Bot 66:2857–2868

    Article  CAS  PubMed  Google Scholar 

  • Shen Q, Wang YT, Tian H, Guo FQ (2013) Nitric oxide mediates cytokinin functions in cell proliferation and meristem maintenance in Arabidopsis. Mol Plant 6:1214–1225

    Article  CAS  PubMed  Google Scholar 

  • Shin R, Berg RH, Schachtman DP (2005) Reactive oxygen species and root hairs in Arabidopsis root response to nitrogen, phosphorus and potassium deficiency. Plant Cell Physiol 46:1350–1357

    Article  CAS  PubMed  Google Scholar 

  • Stadtman ER, Levine RL (2003) Free radical-mediated oxidation of free amino acids and amino acid residues in proteins. Amino Acid 25:207–218

    Article  CAS  Google Scholar 

  • Stoeckle D, Thellmann M, Vermeer JE (2018) Breakout-lateral root emergence in Arabidopsis thaliana. Curr Opin Plant Biol 41:67–72

    Article  PubMed  Google Scholar 

  • Sun H, Feng F, Liu J, Zhao Q (2018) Nitric oxide affects Rice root growth by regulating auxin transport under nitrate supply. Front Plant Sci 9:659

    Article  PubMed  PubMed Central  Google Scholar 

  • Sundaravelpandian K, Chandrika NNP, Schmidt W (2013) PFT1, a transcriptional Mediator complex subunit, controls root hair differentiation through reactive oxygen species (ROS) distribution in Arabidopsis. New Phytol 197:151–161

    Article  CAS  PubMed  Google Scholar 

  • Tian Y, Fan M, Qin Z, Lv H, Wang M, Zhang Z, Zhou W, Zhao N, Li X, Han C, Ding Z, Wang W, Wang ZY, Bai MB (2018) Hydrogen peroxide positively regulates brassinosteroid signaling through oxidation of the BRASSINAZOLE-RESISTANT1 transcription factor. Nat Commun 9:1063

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tossi V, Lamattina J, Cassia R (2013) Pharmacological and genetical evidence supporting nitric oxide requirement for 2,4-epibrassinolide regulation of root architecture in Arabidopsis thaliana. Plant Signal Behav 8:e24712

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tsukagoshi H (2016) Control of root growth and development by reactive oxygen species. Curr Opin Plant Biol 29:57–63

    Article  CAS  PubMed  Google Scholar 

  • Tsukagoshi H, Busch W, Benfey PN (2010) Transcriptional regulation of ROS controls transition from proliferation to differentiation in the root. Cell 143:606–616

    Article  CAS  PubMed  Google Scholar 

  • Wei Z, Li J (2016) Brassinosteroids regulate root growth, development, and symbiosis. Mol Plant 9:86–100

    Article  CAS  PubMed  Google Scholar 

  • Xia XJ, Zhou YH, Shi K, Zhou J, Foyer CH, Yu JQ (2015) Interplay between reactive oxygen species and hormones in the control of plant development and stress tolerance. J Exp Bot 66:2839–2856

    Article  CAS  PubMed  Google Scholar 

  • Xiong J, Tao L, Zhu C (2009) Does nitric oxide play a pivotal role downstream of auxin in promoting crown root primordia initiation in monocots? Plant Sig Behav 4:999–1001

    Article  CAS  Google Scholar 

  • Xu XT, Jin X, Liao WB, Dawuda MM, Li XP, Wang M, Niu LJ, Ren PJ, Zhu YC (2017) Nitric oxide is involved in ethylene-induced adventitious root development in cucumber (Cucumis sativus L.) explants. Sci Hort 215:65–71

    Article  CAS  Google Scholar 

  • Yamasaki H, Watanabe NS, Sakihama Y, Cohen MF (2016) An overview of methods in plant nitric oxide (NO) research: why do we always need to use multiple methods? Method Mol Biol 1424:1–14

    Article  CAS  Google Scholar 

  • Yang L, Zhang J, He J, Qin Y, Hua D, Duan Y, Chen Z, Gong Z (2014) ABA-mediated ROS in mitochondria regulate root meristem activity by controlling PLETHORA expression in Arabidopsis. PLoS Genet 10:e1004791

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu Q, Tian H, Yue K, Liu J, Zhang B, Li X, Ding Z (2016) A P-loop NTPase regulates quiescent center cell division and distal stem cell identity through the regulation of ROS homeostasis in Arabidopsis root. PLoS Genet 12:e1006175

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao P, Sokolov LN, Ye J, Tang CY, Shi J, Zhen Y, Lan W, Hong Z, Qi J, Lu GH, Pandey GK, Yang YH (2016) The LIKE SEX FOUR2 regulates root development by modulating reactive oxygen species homeostasis in Arabidopsis. Sci Rep 6:28683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Y, Wang B, Tang K, Hsu CC, Xie S, Du H, Yang Y, Tao WA, Zhu JK (2017) An Arabidopsis nucleoporin NUP85 modulates plant responses to ABA and salt stress. PLoS Genet 13:e1007124

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José López-Bucio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Raya-González, J., López-Bucio, J.S., López-Bucio, J. (2019). Nitric Oxide and Hydrogen Peroxide in Root Organogenesis. In: Gupta, D., Palma, J., Corpas, F. (eds) Nitric Oxide and Hydrogen Peroxide Signaling in Higher Plants. Springer, Cham. https://doi.org/10.1007/978-3-030-11129-8_8

Download citation

Publish with us

Policies and ethics