Skip to main content

Plant Abiotic Stress: Function of Nitric Oxide and Hydrogen Peroxide

  • Chapter
  • First Online:

Abstract

The negative effect of various environmental stresses is partially due to the generation of reactive oxygen species (ROS). ROS were originally considered to be detrimental to cells. However, it is now recognized that hydrogen peroxide functions as a trigger for induction of many genes encoding enzymes involved in cellular protection under stress. In a number of abiotic responses, NO generation occurs in parallel with H2O2, and both molecules can act synergistically and/or independently. Studies have shown that NO and H2O2 function as stress signals in plants, mediating a range of resistance mechanisms. The main place of the signal perception of worsening environmental conditions is the plasma membrane. On the other hand, one of the major proteins of the plant cell membrane is the plasma membrane H+-ATPase (PM H+-ATPase), a key enzyme in adaptation of plants to abiotic stresses. In plants exposed to different abiotic stresses, e.g., salinity, heavy metals, and low or high temperature, an increase in permeability related to membrane damage is observed. Maintaining ionic balance and replenishing the loss of essential substances are important issues. Support of active transport of ions through the plasma membrane requires increased generation of an electrochemical proton gradient by PM H+-ATPase, which results in a proton-motive force used by active transporters for assimilation of various nutrients, as well as for releasing toxic ions from cells. NO and H2O2 are important elements for understanding the mechanisms of PM H+-ATPase modification at both genetic and posttranslational level. Nowadays the role of NO and H2O2 as well as the signal cascades by which signaling molecules participate in plant responses to changing environmental conditions is under intensive study.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ahn SJ, Yang IJ, Chung GC, Cho BH (1999) Inducible expression of plasma membrane H+-ATPase in the roots of figleaf gourd plants under chilling root temperature. Physiol Plant 106:35–40

    Article  CAS  Google Scholar 

  • Alvarez I, Tomaro LM, Bernavides PM (2003) Changes in polyamines, proline and ethylene in sunflower calluses treated with NaCl. Plant Cell Tissue Organ Cult 74:51–59

    Article  CAS  Google Scholar 

  • Alscher RG, Donahue JL, Cramer CL (1997) Reactive oxygen species and antioxidants: relationship in green cells. Physiol Plant 100:224–233

    Article  CAS  Google Scholar 

  • Arasimowicz-Jelonek M, Floryszak-Wieczorek J, Gwóźdź EA (2011) The message of nitric oxide in cadmium challenged plants. Plant Sci 181:612–620

    Article  CAS  PubMed  Google Scholar 

  • Arora D, Jain P, Singh N, Kaur H, Bhatla SC (2016) Mechanisms of nitric oxide crosstalk with reactive oxygen species scavenging enzymes during abiotic stress tolerance in plants. Free Radic Res 50:291–303

    Article  CAS  PubMed  Google Scholar 

  • Astier J, Lindermayr C (2012) Nitric oxide-dependent posttranslational modification in plants: an update. Int J Mol Sci 13:15193–15208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Astier J, Rasul S, Koen E, Manzoor H, Besson-Bard A, Lamotte O, Jeandroz S, Durner J, Lindermayr C, Wendehenne D (2011) S-nitrosylation: an emerging post-translational protein modification in plants. Plant Sci 181:527–533

    Article  CAS  PubMed  Google Scholar 

  • Astolfi S, Zuchi S, Chiani A, Passera C (2003) In vivo and in vitro effects of cadmium on H+-ATPase activity of plasma membrane vesicles from oat (Avena sativa L.) roots. J Plant Physiol 160:387–393

    Article  CAS  PubMed  Google Scholar 

  • Astolfi S, Zuchi S, Passera C (2005) Effect of cadmium on H+-ATPase activity of plasma memebrane vesicles isolated from roots of different S-supplied maize (Zea mays L.) plants. Plant Sci 169:361–368

    Article  CAS  Google Scholar 

  • Bolwell GP, Bindschedler LV, Blee KA, Butt VS, Davies DR, Gardner SL, Gerrish C, Minibayeva F (2002) The apoplastic oxidative burst in response to biotic stress in plants: a tree component system. J Exp Bot 53:1367–1137

    CAS  PubMed  Google Scholar 

  • Breckle SW, Kahle H (1991) Effects of toxic heavy metals (Cd, Pb) on growth and mineral nutrition on beech (Fagus sylvatica L). Plant Ecol 101:43–53

    Article  Google Scholar 

  • Chen Z, Pottosin II, Cuin TA, Fuglsang AT, Tester M, Jha D, Zepeda-Jazo I, Zhou M, Palmgren MG, Newman IA, Shabala S (2007) Root plasma membrane transporters controlling K+/Na+ homeostasis in salt-stressed barley. Plant Physiol 145:1714–1725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chinnusamy V, Jagendorf A, Zhu J (2005) Understanding and improving salt tolerance in plants. Crop Sci 45:437–448

    Article  CAS  Google Scholar 

  • Chinnusamy V, Zhu J, Zhu J (2006) Gene regulation during cold acclimation in plants. Physiol Plant 126:52–56

    Article  CAS  Google Scholar 

  • Chmielowska-Bąk J, Gzyl J, Rucińska-Sobkowiak R, Arasimowicz-Jelonek M, Deckert J (2014) The new insight into cadmium sensing. Front Plant Sci 5:245

    PubMed  PubMed Central  Google Scholar 

  • Clarke D, Durner J, Navarre DA, Klessig DF (2000) Nitric oxide inhibition of tobacco catalase and ascorbate peroxidase. Mol Plant-Microbe Interact 13:1380–1384

    Article  Google Scholar 

  • Corpas FJ, Leterrier M, Valderrema R, Airaki M, Chaki M, Palma JM, Barroso JB (2011) Nitric oxide imbalance provokes a nitrosative response in plants under abiotic stress. Plant Sci 181:604–611

    Article  CAS  PubMed  Google Scholar 

  • Corpas FJ, Palma JM, del Rio LA, Barroso JB (2009) Evidence supporting the existence of L-arginine-dependent nitric oxide synthase activity in plants. New Phytol 184:9–14

    Article  CAS  PubMed  Google Scholar 

  • del Rio LA, Corpas FJ, Sandalio LM (2003) Plant peroxisomes, reactive oxygen metabolism and nitric oxide. IUBMB Life 55:71–81

    Article  PubMed  Google Scholar 

  • Demidchik V, Sokolik A, Yurin V (1997) The effect of Cu2+ ion transport systems of the plant cell plasmalemma. Plant Physiol 114:1313–1325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Devi S, Prasad M (1999) Membrane lipid alterations in heavy metal exposed plants. In: Prasad MNV, Hagemeyer J (eds) Heavy metal stress in plants. From molecules to ecosystems. Springer, Berlin, pp 99–116

    Chapter  Google Scholar 

  • Domingos P, Pardo AM, Wong A, Gehring C, Feijo JA (2015) Nitric oxide: a multitasked signaling gas in plants. Mol Plant 8:506–520

    Article  CAS  PubMed  Google Scholar 

  • Egbichi I, Keyster M, Ludidi N (2014) Effect of exogenous application of nitric oxide on salt stress responses of soybean. South Afr J Bot 90:131–136

    Article  CAS  Google Scholar 

  • Eick M, Stöhr C (2012) Denitrification by plant roots? New aspects of plant plasma membrane-bound nitrate reductase. Protoplasma 249:909–918

    Article  CAS  PubMed  Google Scholar 

  • Farnese FS, Menezes-Silva PE, Gusman GS, Oliveira JA (2016) When bad guys become good ones: the key role of reactive oxygen species and nitric oxide in the plant responses to abiotic stress. Front Plant Sci 7:471

    Article  PubMed  PubMed Central  Google Scholar 

  • Foyer CH, Lopez-Delgado H, Dat JF, Scott IM (1997) Hydrogen peroxide- and glutathione-associated mechanisms of acclimatory stress tolerance and signalling. Physiol Plant 100:241–254

    Article  CAS  Google Scholar 

  • Foyer CH, Noctor G (2009) Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxid Redox Signal 11:861–890

    Article  CAS  PubMed  Google Scholar 

  • Fuglsang A, Tulinius G, Ciu N, Palmgren M (2006) Protein phosphatases 2A scaffolding subunit A interacts with plasma membrane H+-ATPase C-terminus in the same region as 14-3-3 protein. Physiol Plant 128:334–340

    Article  CAS  Google Scholar 

  • Gill SS, Hasanuzzaman M, Nahar K, Macovei A, Tuteja N (2013) Importance of nitric oxide in cadmium stress tolerance in crop plants. Plant Physiol Biochem 63:254–261

    Article  CAS  PubMed  Google Scholar 

  • Gong M, Li YJ, Chen SZ (2002) Abscisic acid-induced thermotolerance in maize seedlings is mediated by calcium and associated with antioxidant systems. J Plant Physiol 153:488–496

    Article  Google Scholar 

  • Groβ F, Durner J, Gaupels F (2013) Nitric oxide, antioxidants and prooxidants in plant defence responses. Front Plant Sci 4:419

    Google Scholar 

  • Gupta KJ, Igamberdiev AU (2011) The anoxic plant mitochondrion as a nitrite: NO reductase. Mitochondrion 11:537–543

    Article  CAS  PubMed  Google Scholar 

  • Guy C (1990) Cold acclimation and freezing stress tolerance: role of protein metabolism. Annu Rev Plant Physiol Plant Mol Biol 41:187–223

    Article  CAS  Google Scholar 

  • Hancock JT (2012) NO synthase? Generation of nitric oxide in plants. Period Biol 114:19–24

    Google Scholar 

  • Hossain MA, Piyatida P, da Silva JAT, Fujita M (2012) Molecular mechanism of heavy metal toxicity and tolerance in plants: central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. J Bot 2012:37

    Google Scholar 

  • Howlett NG, Avery SV (1997) Relationship between cadmium sensitivity and degree of plasma membrane fatty acid unsaturation in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 48:539–545

    Article  CAS  PubMed  Google Scholar 

  • Hu X, Jiang M, Zhang A, Lu J (2005) Abscisic acid induced apoplastic H2O2 accumulation up-regulates the activities of chloroplastic and cytosolic antioxidant enzymes in maize leaves. Planta 223:57–68

    Article  CAS  PubMed  Google Scholar 

  • Hu X, Zhang A, Zhang J, Jiang M (2006) Abscisic acid is a key inducer of hydrogen peroxide production in leaves of maize plants exposed to water stress. Plant Cell Physiol 47:1484–1495

    Article  CAS  PubMed  Google Scholar 

  • Jakubowska D, Janicka-Russak M, Kabała K, Migocka M, Reda M (2015) Modification of plasma membrane NADPH oxidase activity in cucumber seedling roots in response to cadmium stress. Plant Sci 234:50–59

    Article  CAS  PubMed  Google Scholar 

  • Janicka M, Reda M, Czyżewska K, Kabała K (2018) Involvement of signalling molecules NO, H2O2 and H2S in modification of plasma membrane proton pump in cucumber roots subjected to salt or low temperature stress. Funct Plant Biol 45:428–439

    Article  CAS  PubMed  Google Scholar 

  • Janicka-Russak M (2011) Plant plasma membrane H+-ATPase in adaptation of plants to abiotic stresses. In: Shanker A, Venkateswarlu B (eds) Abiotic stress response in plants- physiological, biochemical and genetic perspectives. InTech, Rijeka, pp 197–218

    Google Scholar 

  • Janicka-Russak M, Kabała K, Burzyński M, Kłobus G (2008) Response of plasma membrane H+-ATPase to heavy metal stress in Cucumis sativus roots. J Exp Bot 59:3721–3728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janicka-Russak M, Kabała K (2012) Abscisic acid and hydrogen peroxide induce modification of plasma membrane H+-ATPase from Cucumis sativus L. roots under heat shock. J Plant Physiol 1969:1607–1614

    Article  CAS  Google Scholar 

  • Janicka-Russak M, Kabała K, Wdowikowska A, Kłobus G (2012a) Response of plasma membrane H+-ATPase to low temperature in cucumber roots. J Plant Res 125:291–300

    Article  CAS  PubMed  Google Scholar 

  • Janicka-Russak M, Kabała K, Burzyński M (2012b) Different effect of cadmium and copper on H+-ATPase activity in plasma membrane vesicles from Cucumis sativus roots. J Exp Bot 63:4133–4142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janicka-Russak M, Kabała K, Wdowikowska A, Kłobus G (2013) Modification of plasma membrane proton pumps in cucumber roots as an adaptation mechanism to salt stress. J Plant Physiol 170:915–922

    Article  CAS  PubMed  Google Scholar 

  • Janicka-Russak M, Kłobus G (2007) Modification of plasma membrane and vacuolar H+-ATPase in response to NaCl and ABA. J Plant Physiol 164:295–302

    Article  CAS  PubMed  Google Scholar 

  • Jasid S, Simontacchi M, Bartoli CG, Puntarulo S (2006) Chloroplasts as a nitric oxide cellular source. Effect of reactive nitrogen species on chloroplastic lipids and proteins. Plant Physiol 142:1246–1255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang M, Zhang J (2002) Involvement of plasma membrane NADPH oxidase in abscisic acid-and water stress-induced antioxidant defense in leaves of maize seedlings. Planta 215:1022–1030

    Article  CAS  PubMed  Google Scholar 

  • Johnston MK, Jacob NP, Brodl MR (2007) Heat shock-induced changes in lipid and protein metabolism in the endoplasmic reticulum of barley aleurone layers. Plant Cell Physiol 48:31–41

    Article  CAS  PubMed  Google Scholar 

  • Jones HG, Jones MB (1989) Introduction: some terminology and common mechanisms. In: Jones HG, Flowers TJ, Jones MB (eds) Plants under stress. Cambridge University Press, Cambridge, pp 1–10

    Chapter  Google Scholar 

  • Kabała K, Janicka-Russak M (2012) Na+/H+ antiport activity in plasma membrane and tonoplast vesicles isolated from NaCl treated cucumber roots. Biol Plant 56:377–382

    Article  CAS  Google Scholar 

  • Kabała K, Janicka-Russak M, Burzyński M, Kłobus G (2008) Comparison of heavy metal effect on the proton pumps of plasma membrane and tonoplast in cucumber root cells. J Plant Physiol 165:278–288

    Article  PubMed  CAS  Google Scholar 

  • Kanczewska J, Marco S, Vandermeeren C, Maudoux O, Rigaud J, Boutry M (2005) Activation of the plant plasma membrane H+-ATPase by phosphorylation and binding of 14-3-3 proteins convert a dimer into a hexamer. Proc Natl Acad Sci U S A 102:11675–11680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kasamo K (2003) Regulation of plasma membrane H+-ATPase activity by the membrane environment. J Plant Res 116:517–523

    Article  CAS  PubMed  Google Scholar 

  • Kłobus G, Janicka-Russak M (2004) Modulation by cytosolic components of proton pump activities in plasma membrane and tonoplast from Cucumis sativus roots during salt stress. Physiol Plant 121:84–92

    Article  PubMed  Google Scholar 

  • Knight H, Trewavas AJ, Knight MR (1996) Cold calcium signaling in Arabidopsis involves two cellular pools and a change in calcium signature after acclimation. Plant Cell 8:489–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolbert Z, Ortega L, Erdei L (2010) Involvement of nitrate reductase (NR) in osmotic stress-induced NO generation of Arabidopsis thaliana L. roots. J Plant Physiol 167:77–80

    Article  CAS  PubMed  Google Scholar 

  • Kocsy G, Galiba G, Brunold C (2001) Role of glutathione in adaptation and signaling during chilling and cold acclimation in plants. Physiol Plant 113:158–164

    Article  CAS  PubMed  Google Scholar 

  • Königshofer H, Tromballa HW, Löppert HG (2008) Early events in signaling high temperature stress in tobacco BY2 cells involve alterations in membrane fluidity and enhanced hydrogen peroxide production. Plant Cell Environ 31:1771–1780

    Article  PubMed  CAS  Google Scholar 

  • Krishna P, Sacco M, Cherutti JF, Hill S (1995) Cold-induced accumulation of hsp-90 transcripts in Brassica napus. Plant Physiol 107:915–923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kubiś J (2003) Polyamines and “scavenging system”: influence of exogenous spermidine on catalase and guaiacol peroxidase activities, and free polyamines level in barley leaves under water deficit. Acta Physiol Plant 25:337–343

    Article  Google Scholar 

  • Laloi C, Apel K, Danon A (2004) Reactive oxygen signalling: the latest news. Curr Opin Plant Biol 7:323–328

    Article  CAS  PubMed  Google Scholar 

  • Larkindale J, Huang B (2004) Changes of lipid composition and saturation level in leaves and roots for heat-stress and heat-acclimated creeping bentgrass (Agrostis stolonifera). Environ Exp Bot 51:57–67

    Article  CAS  Google Scholar 

  • Larkindale J, Knight MR (2002) Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene and salicylic acid. Plant Physiol 128:682–695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li W, Wei Z, Qiao Z, Wu Z, Cheng L, Wang Y (2013) Proteomics analysis of alfalfa response to heat stress. PLoS One 8:82725

    Article  CAS  Google Scholar 

  • Liu A, Fan J, Gitau MM, Chen L, Fu J (2016) Nitric oxide involvement in Bermuda grass response to salt stress. J Amer Soc Hort Sci 141:425–443

    Article  CAS  Google Scholar 

  • Lopez-Pérez L, Martínez Ballesta M, Maurel C, Carvajal M (2009) Changes in plasma membrane lipids, aquaporins and proton pump of broccoli roots, as an adaptation mechanism to salinity. Phytochemistry 70:492–500

    Article  PubMed  CAS  Google Scholar 

  • Mahajan S, Tuteja N (2005) Cold, salinity and drought stress: an overview. Arch Biochem Biophys 444:139–158

    Article  CAS  PubMed  Google Scholar 

  • Martz F, Sutinen M, Kiviniemi S, Palta J (2006) Changes in freezing tolerance, plasma membrane H+-ATPase activity and fatty acid composition in Pinus resinosa needles during cold acclimation and de-acclimation. Tree Physiol 26:783–790

    Article  CAS  PubMed  Google Scholar 

  • Mata-Pérez C, Begara-Morales JC, Chaki M, Sánchez-Calvo B, Valderrama R, Padilla MN, Corpas FJ, Barroso JB (2016) Protein tyrosine nitration during development and abiotic stress response in plants. Front Plant Sci 7:1699

    Article  PubMed  PubMed Central  Google Scholar 

  • Miller G, Mittler R (2006) Could heat shock transcription factors function as hydrogen peroxide sensors in plants. Ann Bot 98:279–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moschou PN, Paschalidis AK, Delis ID, Andriopoulou AH, Lagiotis GD, Yakoumakis DI, Roubelakis-Angelakis KA (2008) Spermidine exodus and oxidation in the apoplast induced by abiotic stress is responsible for H2O2 signatures that direct tolerance responses in tobacco. Plant Cell 20:1708–1724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy A, Taiz L (1997) Correlation between potassium efflux and copper sensitivity in 10 Arabidopsis ecotypes. New Phytol 136:211–222

    Article  CAS  Google Scholar 

  • Murphy A, Eisinger WR, Shaff JE, Kochian LV, Taiz L (1999) Early copper-induced leakage of K+ from Arabidopsis seedlings is mediated by ion channels and coupled to citrate efflux. Plant Physiol 121:1375–1382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neil S, Barros R, Bright J, Desikan R, Hancock J, Harrison J et al (2008) Nitroc oxide, stomatal closure, and abiotic stress. J Exp Bot 59:165–176

    Article  CAS  Google Scholar 

  • Neill SJ, Desikan D, Clarke A, Hurst RD, Hancock JT (2002) Hydrogen peroxide and nitric oxide as signaling molecules in plants. J Exp Bot 53:1237–1242

    Article  CAS  PubMed  Google Scholar 

  • Niu X, Narasimhan M, Salzman R (1993) NaCl regulation of plasma membrane H+-ATPase gene expression in Glycophyte and Halophyte. Plant Physiol 103:712–718

    Article  Google Scholar 

  • Oufattole M, Arango M, Boutry M (2000) Identification and expression of three new Nicotiana plumbaginifolia genes which encode isoforms of a plasma membrane H+-ATPase, and one which is induced by mechanical stress. Planta 210:715–722

    Article  CAS  PubMed  Google Scholar 

  • Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60:324–349

    Article  CAS  PubMed  Google Scholar 

  • Pál M, Horwáth E, Janda T, Páldi E, Szalai G (2005) Cadmium stimulates the accumulation of salicylic acid and its putative precursors in maize (Zea mays) plants. Physiol Plant 125:356–364

    Article  CAS  Google Scholar 

  • Paschalidis AK, Toumi I, Moschou NP, Kalliopi A, Roubelakis-Angelakis A (2010) ABA-dependent amine oxidases-derived H2O2 affects stomata conductance. Plant Signal Behav 5:1153–1156

    Article  CAS  Google Scholar 

  • Pei ZM, Murata Y, Benning G, Thomine S, Klüsener B, Allen GJ, Grill E, Schroeder JI (2000) Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature 17:731–734

    Article  Google Scholar 

  • Pérez de Juan J, Irigoyen J, Sánchez-Díaz M (1997) Chilling of drought-hardened and non-hardened plants of different chilling-sensitive maize lines changes in water relations and ABA contents. Plant Sci 122:71–79

    Article  Google Scholar 

  • Perez-Prat E, Narasimhan M, Niu X, Botella M, Bressan R, Valupesta V, Hasegawa PM, Binzel ML (1994) Growth cycle stage dependent NaCl induction of plasma membrane H+-ATPase mRNA accumulation in de-adapted tobacco cells. Plant Cell Environ 17:327–333

    Article  CAS  Google Scholar 

  • Piotrovskii MS, Shevyreva TA, Zhestkova IM, Trofimova MS (2011) Activation of plasmalemmal NADPH oxidase in etiolated maize seedlings exposed to chilling temperatures. Russ J Plant Physiol 58:234–242

    Article  CAS  Google Scholar 

  • Polisensky DH, Braam J (1996) Cold shock regulation of the Arabidopsis TCH genes and the effects of modulating intracellular calcium levels. Plant Physiol 111:1271–1279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiao W, Faan LM (2008) Nitric oxide signaling in plant responses to abiotic stresses. J Integr Plant Biol 50:1238–1246

    Article  CAS  PubMed  Google Scholar 

  • Qiao W, Li C, Fan LM (2014) Cross-talk between nitric oxide and hydrogen peroxide in plant responses to abiotic stresses. Environ Exp Bot 100:84–93

    Article  CAS  Google Scholar 

  • Quan LJ, Zhang B, Shi WW, Li HY (2008) Hydrogen peroxide in plants: a versatile molecule of the reactive oxygen species network. J Integr Plant Biol 50:2–18

    Article  CAS  PubMed  Google Scholar 

  • Queval G, Hager J, Gakière B, Noctor G (2008) Why are literature data for H2O2 contents so variable? A discussion of potential difficulties in quantitative assays of leaf extracts. J Exp Bot 59:135–146

    Article  CAS  PubMed  Google Scholar 

  • Reda M, Golicka A, Kabała K, Janicka M (2018) Involvement of NR and PM-NR in NO biosynthesis in cucumber plants subjected to salt stress. Plant Sci 267:55–64

    Article  CAS  PubMed  Google Scholar 

  • Robertson AJ, Ishikawa M, Gusta LV, MacKenzie SL (1994) Abscisic acid induced heat tolerance in Bromus inermis lees cell suspension cultures. Plant Physiol 105:181–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romero-Puertas MC, Rodríguez-Serrano M, Sandalio ML (2013) Protein S-nitrosylation in plants under abiotic stress: an overview. Front Plant Sci 4:373

    Article  PubMed  PubMed Central  Google Scholar 

  • Sagi M, Fluhr R (2006) Production of reactive oxygen species by plant NADPH oxidases. Plant Physiol 141:336–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sahay S, Gupta M (2017) An update on nitric oxide and its benign role in plant responses under metal stress. Nitric Oxide 67:39–52

    Article  CAS  PubMed  Google Scholar 

  • Sahi C, Singh A, Blumwald E, Grover A (2006) Beyond osmolytes and transporters novel plant salt-stress tolerance-related genes from transcriptional profiling data. Physiol Plant 127:1–9

    Article  CAS  Google Scholar 

  • Sahu BB, Shaw BP (2009) Salt-inducible isoform of plasma membrane H+-ATPase gene in rice remains constitutively expressed in natural halophyte, Suaeda maritima. J Plant Physiol 166:1077–1089

    Article  CAS  PubMed  Google Scholar 

  • Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol 49:643–668

    Article  CAS  PubMed  Google Scholar 

  • Sami F, Faizan M, Faraz A, Siddiqui F, Yusuf M, Hayat S (2018) Nitric oxide-mediated integrative alterations in plant metabolism to confer abiotic stress tolerance, NO crosstalk with phytohormones and NO-mediated post translational modifications in modulating diverse plant stress. Nitric Oxide 73:22–38

    Article  CAS  PubMed  Google Scholar 

  • Santolini J, André F, Jeandroz S, Wendehenne D (2017) Nitric oxide synthase in plants: where do we stand? Nitric Oxide 63:30–38

    Article  CAS  PubMed  Google Scholar 

  • Serrano R (1989) Structure and function of plasma membrane ATPase. Annu Rev Plant Physiol Plant Mol Biol 40:61–94

    Article  CAS  Google Scholar 

  • Shapiro AD (2005) Nitric oxide signaling in plants. Vitam Horm 72:339–398

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui MH, Al-Whaibi MH, Basalah MO (2010) Role of nitric oxide in tolerance of plants to abiotic stress. Protoplasma 248:447–455

    Article  PubMed  CAS  Google Scholar 

  • Silva P, Geros H (2009) Regulation by salt of vacuolar H+-ATPase and H+-pyrophosphatase activities and Na+/H+ exchange. Plant Signal Behav 4:718–726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stöhr C, Stremlau S (2006) Formation and possible roles of nitric oxide in plant roots. J Exp Bot 57:463–470

    Article  PubMed  CAS  Google Scholar 

  • Stöhr C, Ullrich WR (2002) Generation and possible roles of NO in plant roots and their apoplastic space. J Exp Bot 53:2293–2303

    Article  PubMed  CAS  Google Scholar 

  • Sun C, Lu L, Liu L, Liu W, Yu Y, Liu X, Hu Y, Jin C, Lin X (2014) Nitrate reductase-mediated early nitric oxide burst alleviates oxidative damage induced by aluminum through enhancement of antioxidant defenses in roots of wheat (Triticum aestivum). New Phytol 201:1240–1250

    Article  CAS  PubMed  Google Scholar 

  • Suzuki N, Mittler R (2006) Reactive oxygen species and temperature stresses: a delicate balance between signaling and destruction. Physiol Plant 26:45–51

    Article  Google Scholar 

  • Svennelid F, Olsson A, Piotrowski M, Rosenquist M, Ottman C, Larsson C, Oecking C, Sommarin M (1999) Phosphorylation of Thr-948 at the C-terminus of the plasma membrane H+-ATPase creates a binding site for regulatory 14-3-3 protein. Plant Cell 11:2379–2391

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tanou G, Job C, Rajjou L, Arc E, Belghazi M, Diamantidis G, Molassiotis A, Job D (2009) Proteomics reveals the overlapping roles of hydrogen peroxide and nitric oxide in the acclimation of citrus plants to salinity. Plant J 60:795–805

    Article  CAS  PubMed  Google Scholar 

  • Timperio AM, Egidi MG, Zolla L (2008) Proteomics applied on plant abiotic stresses: role of heat shock proteins (HSP). J Proteom 71:391–411

    Article  CAS  Google Scholar 

  • Tischner R, Planchet E, Kaiser WM (2004) Mitochondrial electron transport as a source for nitric oxide in the unicellular green alga Chlorella sorokiniana. FEBS Lett 576:151–155

    Article  CAS  PubMed  Google Scholar 

  • Toumi I, Moschou PN, Paschalidis KA, Bouamama B, Ben Salem-Fnayou A, Ghorbel AW, Mliki A, Roubelakis-Angelakis KA (2010) Abscisic acid signals reorientation of polyamine metabolism to orchestrate stress responses via the polyamine exodus pathway in grapevine. J Plant Physiol 167:519–525

    Article  CAS  PubMed  Google Scholar 

  • Uchida A, Jagendorf AT, Hibino T, Takabe T, Takabe T (2002) Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice. Plant Sci 163:515–523

    Article  CAS  Google Scholar 

  • Van Gestelen P, Asard H, Caubergs RJ (1997) Solubilization and separation of a plant plasma membrane NADPH-superoxide (O. 2 )-synthase from other NAD(P)H-oxidoreductases. Plant Physiol 115:543–550

    Article  PubMed  PubMed Central  Google Scholar 

  • Vandenabeele S, Van Der Kelen K, Dat J, Gadjev I, Boonefaes T, Morsa S, Rottiers P, Slooten L, van Montagu M, Zabeau M, Inze D, van Breusegem F (2003) A comprehensive analysis of hydrogen peroxide-induced gene expression in tobacco. Proc Natl Acad Sci U S A 100:16113–16118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vera-Estrella R, Barkla B, Higgins V, Blumwald E (1994) Plant defense response to fungal pathogens (activation of host-plasma membrane H+-ATPase by elicitor-induced enzyme dephosphorylation). Plant Physiol 104:209–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Volkov RA, Panchuk II, Mullineaux PM, Schoffl F (2006) Heat stress-induced H2O2 is required for effective expression of heat shock genes in Arabidopsis. Plant Mol Biol 61:733–746

    Article  CAS  PubMed  Google Scholar 

  • Waie B, Rajam M (2003) Effect of increased polyamine biosynthesis on stress responses in transgenic tobacco by introduction of human S-adenosylmethionine gene. Plant Sci 164:727–734

    Article  CAS  Google Scholar 

  • Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trend Plant Sci 9:244–253

    Article  CAS  Google Scholar 

  • Wang X, Ma Y, Huang C, Li J, Wan Q, Bi Y (2008) Involvement of glucose-6-phosphate dehydrogenase in reduced glutathione maintenance and hydrogen peroxide signal under salt stress. Plant Signal Behav 3:394–395

    Article  PubMed  PubMed Central  Google Scholar 

  • Weidert ER, Schoenborn SO, Cantu-Medellin N, Choughule KV, Jones JP, Kelly EE (2014) Inhibition of xanthine oxidase by the aldehyde oxidase inhibitor raloxifene; implications for identifying molybdenum nitrite reductases. Nitric Oxide 37:41–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong J, An L, Lu H, Zhu C (2009) Exogenous nitric oxide enhances cadmium tolerance of rice by increasing pectin and hemicellulose contents in root cell wall. Planta 230:755–765

    Article  CAS  PubMed  Google Scholar 

  • Xiong L, Zhu J (2001) Abiotic stress signal transduction in plants: molecular and genetic perspectives. Physiol Plant 112:152–166

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Xu S, An L, Chen N (2007) NADPH oxidase-dependent hydrogen peroxide production, induced by salinity stress, may be involved in the regulation of total calcium in roots of wheat. J Plant Physiol 164:1429–1435

    Article  CAS  PubMed  Google Scholar 

  • Yu M, Lamattina L, Spoel SH, Loake GJ (2014) Nitric oxide function in plant biology: a redox cue in deconvolution. New Phytol 202:1142–1156

    Article  CAS  PubMed  Google Scholar 

  • Yun BW, Feechan A, Yin M, Saidi NB, le Bihan T, Yu M, Moore JW, Kang JG, Kwon E, Spoel SH, Pallas JA, Loake GJ (2011) S-nitrosylation of NADPH oxidase regulates cell death in plant immunity. Nature 478:264–268

    Article  CAS  PubMed  Google Scholar 

  • Zhang JZ, Wang L, Liu Y, Zhang Q, Wei Q, Zhang W (2006) Nitric oxide enhances salt tolerance in maize seedlings through increasing activities of proton pump and Na+/H+ antiport in tonoplast. Planta 224:545–555

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Wang Y, Yang Y, Wu H, Wang D, Liu J (2007) Involvement of hydrogen peroxide and nitric oxide in salt resistance in the calluses from Populus euphratica. Plant Cell Environ 30:775–785

    Article  PubMed  CAS  Google Scholar 

  • Zhao MG, Tian QY, Zhang WH (2007) Nitric oxide synthase-dependent nitric oxide production is associated with salt tolerance in Arabidopsis. Plant Physiol 144:206–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu JK (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6:1–5

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Małgorzata Janicka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Janicka, M., Reda, M., Napieraj, N., Kabała, K. (2019). Plant Abiotic Stress: Function of Nitric Oxide and Hydrogen Peroxide. In: Gupta, D., Palma, J., Corpas, F. (eds) Nitric Oxide and Hydrogen Peroxide Signaling in Higher Plants. Springer, Cham. https://doi.org/10.1007/978-3-030-11129-8_10

Download citation

Publish with us

Policies and ethics