Skip to main content

Explicit Formulas for Enumeration of Lattice Paths: Basketball and the Kernel Method

  • Chapter
  • First Online:

Part of the book series: Developments in Mathematics ((DEVM,volume 58))

Abstract

This article deals with the enumeration of directed lattice walks on the integers with any finite set of steps, starting at a given altitude j and ending at a given altitude k, with additional constraints, for example, to never attain altitude 0 in-between. We first discuss the case of walks on the integers with steps \(-h, \dots , -1, +1, \dots , +h\). The case \(h=1\) is equivalent to the classical Dyck paths, for which many ways of getting explicit formulas involving Catalan-like numbers are known. The case \(h=2\) corresponds to “basketball” walks, which we treat in full detail. Then, we move on to the more general case of walks with any finite set of steps, also allowing some weights/probabilities associated with each step. We show how a method of wide applicability, the so-called kernel method, leads to explicit formulas for the number of walks of length n, for any h, in terms of nested sums of binomials. We finally relate some special cases to other combinatorial problems, or to problems arising in queuing theory.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    By a Laurent polynomial in u we mean a polynomial in u and \(u^{-1}\).

  2. 2.

    Here, by Laurent series we mean a series of the form \(H(z)=\sum _{n\ge a} H_n\,z^n\) for some (possibly negative) integer a.

  3. 3.

    In this article, by convention \(0\in \mathbb {N}\).

  4. 4.

    In this article, whenever we thought it could ease the reading, without harming the understanding, we write \(u_1\) for \(u_1(z)\), or F for F(z), etc.

  5. 5.

    The quasi-inverse of a power series f(z) of positive valuation is \(1/(1-f(z))\).

  6. 6.

    Unconstrained means that the walks are allowed to have both positive and negative altitudes.

  7. 7.

    Axxxxxx refers to the corresponding sequence in the On-Line Encyclopedia of Integer Sequences, available electronically at https://oeis.org.

  8. 8.

    Here, the \(^{*}\) is a mnemonic to remind us that we do not have the 0-step.

References

  1. André, D.: Mémoire sur les combinaisons régulières et leurs appliquations. Ann. Sci. École Norm. Sup. \(2^{e}\) série 5, 155–198 (1876)

    Google Scholar 

  2. Andrews, G.E., Eriksson, H., Petrov, F., Romik, D.: Integrals, partitions and MacMahon’s theorem. J. Combin. Theory Ser. A 114, 545–554 (2007)

    Google Scholar 

  3. Andrews, G.E.: Euler’s “exemplum memorabile inductionis fallacis” and \(q\)-trinomial coefficients. J. Am. Math. Soc. 3, 653–669 (1990)

    Google Scholar 

  4. Andrews. G.E., Baxter, R.J.: Lattice gas generalization of the hard hexagon model. III. \(q\)-trinomial coefficients. J. Stat. Phys. 47, 297–330 (1987)

    Google Scholar 

  5. Ayyer, A., Zeilberger, D.: The number of [old-time] basketball games with final score \(n\,n\) where the home team was never losing but also never ahead by more than \(w\) points. Electron. J. Combin. 14, Research Paper 19, 8 (2007)

    Google Scholar 

  6. Banderier, B., Bousquet-Mélou, M., Denise, A., Flajolet, P., Gardy, D., Gouyou-Beauchamps, D.: Generating functions for generating trees. Discret. Math. 246, 29–55 (2002)

    Google Scholar 

  7. Banderier, C., Drmota, M.: Formulae and asymptotics for coefficients of algebraic functions. Combin. Probab. Comput. 24, 1–53 (2015)

    Google Scholar 

  8. Banderier, C., Flajolet, P.: Basic analytic combinatorics of directed lattice paths. Theor. Comput. Sci. 281, 37–80 (2002)

    Google Scholar 

  9. Banderier, C., Schwer, S.: Why Delannoy numbers? J. Stat. Plan. Inference 135, 40–54 (2005)

    Google Scholar 

  10. Banderier, C., Wallner, M.: The reflection-absorption model for directed lattice paths. In preparation

    Google Scholar 

  11. Banderier, C., Wallner, M.: The kernel method for lattice paths below a rational slope. This volume

    Google Scholar 

  12. Barcucci, E., Pinzani, R., Sprugnoli, R.: The Motzkin family. Pure Math. Appl. Ser. A 2, 249–279 (1992)

    Google Scholar 

  13. Bender, E.A., Williamson, S.G.: Foundations of Combinatorics with Applications. Dover (2006)

    Google Scholar 

  14. Bettinelli, J., Fusy, É., Mailler, C., Randazzo, L.: A bijective study of basketball walks. Sém. Lothar. Combin. 77, 24 (2017). Art. B77a

    Google Scholar 

  15. Blasiak, P., Dattoli, G., Horzela, A., Penson, K.A., Zhukovsky, K.: Motzkin numbers, central trinomial coefficients and hybrid polynomials. J. Integer Seq. 11, 11 (2008). Article 08.1.1

    Google Scholar 

  16. Böhm, W.: Lattice path counting and the theory of queues. J. Stat. Plan. Inference 140, 2168–2183 (2010)

    Google Scholar 

  17. Bostan, A., Lairez, P., Salvy, B.: Multiple binomial sums. J. Symb. Comput. 80, 351–386 (2016)

    Google Scholar 

  18. Bousquet-Mélou, M.: Discrete excursions. Sém. Lothar. Combin. 57, 23 (2008). Art. 57d

    Google Scholar 

  19. Bousquet-Mélou, M., Jehanne, A.: Polynomial equations with one catalytic variable, algebraic series and map enumeration. J. Combin. Theory Ser. B 96, 623–672 (2006)

    Google Scholar 

  20. Bousquet-Mélou, M., Petkovšek, M.: Linear recurrences with constant coefficients: the multivariate case. Discret. Math. 225, 51–75 (2000)

    Google Scholar 

  21. Boyle, P.: Option valuation using a three-jump process. Int. Options J. 3, 7–12 (1986)

    Google Scholar 

  22. Bürmann, H.H.: Formules du développement, de retour et d’integration. Mém. Acad. Royale Sci. Belles-Lettres Berlin (1798). Submitted to the Institut National de France; the manuscript survives in the archives of the École Nationale des Ponts et Chaussées in Paris

    Google Scholar 

  23. Comtet, C.: Advanced Combinatorics. D. Reidel Publishing Co. (1974)

    Google Scholar 

  24. Dieudonné, J.: Infinitesimal Calculus. Houghton Mifflin Co., Hermann, Paris; Translated from the French (1971)

    Google Scholar 

  25. Egorychev, G.P.: Integral Representation and the Computation of Combinatorial Sums. Translations of Mathematical Monographs, vol. 59. American Mathematical Society, Providence (1984)

    Google Scholar 

  26. Eynard, B.: Counting Surfaces. Progress in Mathematical Physics, vol. 70. Birkhäuser/Springer, Cham (2016)

    Google Scholar 

  27. Fayolle, G., Iasnogorodski, R., Malyshev, V.: Random walks in the quarter-plane. Applications of Mathematics, vol. 40. Springer, Berlin (1999)

    Google Scholar 

  28. Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge University Press, New York (2009)

    Google Scholar 

  29. Gross, D., Shortle, J.F., Thompson, J.M., Harris, C.M.: Fundamentals of Queueing Theory. Wiley Series in Probability and Statistics, 4th edn. Wiley, NJ (2008)

    Google Scholar 

  30. Jain, J.L., Mohanty, S.G., Böhm, W.: A Course on Queueing Models. Statistics: Textbooks and Monographs. Chapman and Hall/CRC, Boca Raton (2007)

    Google Scholar 

  31. Kauers, M., Johansson, F., Jaroschek, M.: Ore polynomials in sage. In: Computer Algebra and Polynomials. Lecture Notes in Computer Science, pp. 105–125. Springer, Berlin (2015)

    Google Scholar 

  32. Kauers, M., Paule, P.: The Concrete Tetrahedron. Texts and Monographs in Symbolic Computation. Springer, Berlin (2011)

    Google Scholar 

  33. Klazar, M.: The Füredi–Hajnal conjecture implies the Stanley–Wilf conjecture. In: Formal Power Series and Algebraic Combinatorics (Moscow, 2000), pp. 250–255. Springer, Berlin (2000)

    Google Scholar 

  34. Knuth, D.E.: The Art of Computer Programming. Vol. 2: Seminumerical Algorithms, 4th edn. Addison-Wesley (1998)

    Google Scholar 

  35. Krinik, A.C., Mohanty, S.G.: On batch queueing systems: a combinatorial approach. J. Stat. Plan. Inference 140, 2271–2284 (2010)

    Google Scholar 

  36. Krinik, A.C., Shun, K.: Markov processes with constant transition rates of size one and two. J. Stat. Theory Pract. 5, 475–495 (2011)

    Google Scholar 

  37. Lagrange, J.-L.: Nouvelle méthode pour résoudre les équations littérales par le moyen des séries. Mém. Acad. Royale Sci. Belles-Lettres Berlin 24, 251–326 (1770) Reprinted in Œuvres de Lagrange, tome 2. Paris: Gauthier-Villars, pp. 655–726 (1868)

    Google Scholar 

  38. Lagrange, J.-L., Legendre, A.-M.: Rapport sur deux mémoires d’analyse du professeur burmann. Mém. Inst. Nat. Sci. Arts: Sci Math. Phys. 2, 13–17 (1799)

    Google Scholar 

  39. Levin, D., Pudwell, L.K., Riehl, M., Sandberg, A.: Pattern avoidance in \(k\)-ary heaps. Australas. J. Combin. 64, 120–139 (2016)

    Google Scholar 

  40. Marcus, A., Tardos, G.: Excluded permutation matrices and the Stanley–Wilf conjecture. J. Combin. Theory Ser. A 107, 153–160 (2004)

    Google Scholar 

  41. Margolius, B.: Asymptotic estimates for queueing systems with time-varying periodic transition rates. This volume

    Google Scholar 

  42. Mohanty, S.G.: Lattice Path Counting and Applications. Academic Press (1979)

    Google Scholar 

  43. Montel, P.: Sur les combinaisons avec répétitions limitées. Bull. Sci. Math. 2(66), 86–103 (1942)

    Google Scholar 

  44. Narayana, T.V.: Lattice Path Combinatorics with Statistical Applications, Mathematical Expositions, vol. 23. University of Toronto Press (1979)

    Google Scholar 

  45. Petkovšek, M., Wilf, H.S., Zeilberger, D.: \(A = B\). A.K. Peters (1996)

    Google Scholar 

  46. Salvy, B., Zimmermann, P.: Gfun: a Maple package for the manipulation of generating and holonomic functions in one variable. ACM Trans. Math. Softw. 20, 163–177 (1994)

    Google Scholar 

  47. Schneider, C.: Symbolic summation assists combinatorics. Sém. Lothar. Combin. 56, 36 (2007). Art. B56b

    Google Scholar 

  48. Stanley, R.P.: Enumerative combinatorics, vol. 1. 2nd edn. Cambridge Studies in Advanced Mathematics, vol. 49. Cambridge University Press, Cambridge (2012)

    Google Scholar 

  49. Stanley, R.P.: Enumerative combinatorics, vol. 2. Cambridge Studies in Advanced Mathematics, vol. 62. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  50. Xin, G.: The ring of Malcev–Neumann series and the residue theorem. Ph.D. thesis, Brandeis University (2004)

    Google Scholar 

Download references

Acknowledgements

We thank the organizers of the 8th International Conference on Lattice Path Combinatorics & Applications, which provided the opportunity for this collaboration. Sri Gopal Mohanty played an important role in the birth of this sequence of conferences, and his book [42] was the first one (together with the book of his Ph.D. advisor Tadepalli Venkata Narayana [44]) to spur strong interest in lattice path enumeration. We are therefore pleased to dedicate our article to him.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Wallner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Banderier, C. et al. (2019). Explicit Formulas for Enumeration of Lattice Paths: Basketball and the Kernel Method. In: Andrews, G., Krattenthaler, C., Krinik, A. (eds) Lattice Path Combinatorics and Applications. Developments in Mathematics, vol 58. Springer, Cham. https://doi.org/10.1007/978-3-030-11102-1_6

Download citation

Publish with us

Policies and ethics