Skip to main content

Laws Relating Runs, Long Runs, and Steps in Gambler’s Ruin, with Persistence in Two Strata

  • Chapter
  • First Online:
Book cover Lattice Path Combinatorics and Applications

Part of the book series: Developments in Mathematics ((DEVM,volume 58))

Abstract

Define a certain gambler’s ruin process \(\mathbf {X}_{j}, \, j\ge 0,\) such that the increments \(\varepsilon _{j}:=\mathbf {X}_{j}-\mathbf {X}_{j-1}\) take values \(\pm 1\) and satisfy \(P(\varepsilon _{j+1}=1|\varepsilon _{j}=1, |\mathbf {X}_{j}|=k)=P(\varepsilon _{j+1}=-1|\varepsilon _{j}=-1,|\mathbf {X}_{j}|=k)=a_k\), all \(j\ge 1\), where \(a_k=a\) if \( 0\le k\le f-1\), and \(a_k=b\) if \(f\le k<N\). Here, \(0<a, b <1\) denote persistence parameters and \( f ,N\in \mathbb {N} \) with \(f<N\). The process starts at \(\mathbf {X}_0=m\in (-N,N)\) and terminates when \(|\mathbf {X}_j|=N\). Denote by \({\mathscr {R}}'_N\), \({\mathscr {U}}'_N\), and \({\mathscr {L}}'_N\), respectively, the numbers of runs, long runs, and steps in the meander portion of the gambler’s ruin process. Define \(X_N:=\left( {\mathscr {L}}'_N-\frac{1-a-b}{(1-a)(1-b)}{\mathscr {R}}'_N-\frac{1}{(1-a)(1-b)}{\mathscr {U}}'_N\right) /N\) and let \(f\sim \eta N\) for some \(0<\eta <1\). We show \(\lim _{N\rightarrow \infty } E\{e^{itX_N}\}=\hat{\varphi }(t)\) exists in an explicit form. We obtain a companion theorem for the last visit portion of the gambler’s ruin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bálint, P., Tóth, B., Tóth, P.: On the zero mass limit of tagged particle diffusion in the 1-d Rayleigh-gas. J. Stat. Phys. 127, 657–675 (2007)

    Article  MathSciNet  Google Scholar 

  2. Banderier, C., Flajolet, P.: Basic analytic combinatorics of discrete lattice paths. Theor. Comput. Sci. 281, 37–80 (2002)

    Article  Google Scholar 

  3. Banderier, C., Nicodème, P.: Bounded discrete walks. In: Discrete Mathematics and Theoretical Computer Science, Proceedings, vol. AM, pp. 35–48 (2010)

    Google Scholar 

  4. Bousquet-Mélou, M.: Discrete excursions. Sém. Lothar. Combin. 57, Art. B57d, 23 pp. (2008)

    Google Scholar 

  5. Chihara, T.S.: An Introduction to Orthogonal Polynomials. Gordon and Breach, New York (1978)

    MATH  Google Scholar 

  6. de Bruijn, N.G., Knuth, D.E., Rice, S.O.: The average height of planted plane trees. In: Read, R.C. (ed.) Graph Theory and Computing, pp. 15–22. Academic, New York (1972)

    Chapter  Google Scholar 

  7. Deutsch, E.: Dyck path enumeration. Discrete Math. 204, 167–202 (1999)

    Article  MathSciNet  Google Scholar 

  8. Feller, W.: An Introduction to Probability Theory and Its Applications, vol. I, 3rd edn. Wiley, New York (1968)

    Google Scholar 

  9. Flajolet, P.: Combinatorial aspects of continued fractions. Discrete Math. 32, 125–161 (1980)

    Article  MathSciNet  Google Scholar 

  10. Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  11. Ismail, M.E.H.: Classical and Quantum Orthogonal Polynomials in One Variable. Cambridge University Press, Cambridge (2005)

    Book  Google Scholar 

  12. Krattenthaler, C.: Lattice path enumeration. In: Bóna, M. (ed.) Handbook of Enumerative Combinatorics. CRC Press, Boca Raton (2015)

    Google Scholar 

  13. Mohan, C.: The gambler’s ruin problem with correlation. Biometrika 42, 486–493 (1955)

    Article  MathSciNet  Google Scholar 

  14. Morrow, G.J.: Laws relating runs and steps in gambler’s ruin. Stoch. Proc. Appl. 125, 2010–2025 (2015)

    Article  MathSciNet  Google Scholar 

  15. Morrow, G.J.: Mathematica calculations for laws relating runs, long runs, and steps in gambler’s ruin, with persistence in two strata (2018). http://www.uccs.edu/gmorrow

  16. On-Line Encyclopedia of Integer Sequences. http://oeis.org/

  17. Poll, D.B., Kilpatrick, Z.P.: Persistent search in single and multiple confined domains: a velocity-jump process model. J. Stat. Mech. 2016, 053201, 21 pp. (2016)

    Google Scholar 

  18. Reed, M., Simon, B.: Methods of Modern Mathematical Physics, vol. II: Fourier Analysis, Self-Adjointness. Academic, New York (1972)

    MATH  Google Scholar 

  19. Spitzer, F.: Principles of Random Walk. Van Nostrand, Princeton (1964)

    Book  Google Scholar 

  20. Swamy, M.N.S.: Generalized Fibonacci and Lucas polynomials and their associated diagonal polynomials. Fibonacci Q. 37, 213–222 (1999)

    MathSciNet  MATH  Google Scholar 

  21. Szász, D., Tóth, B.: Persistent random walks in a one-dimensional random environment. J. Stat. Phys. 37, 27–38 (1984)

    Article  MathSciNet  Google Scholar 

  22. Wolfram, S.: Mathematica. http://www.wolfram.com/mathematica/

Download references

Acknowledgements

The author wishes to thank the referee who gave extensive suggestions that led to many improvements in the presentation. The companion document [15] would not have come into the public domain without the referee’s helpful (and exuberant!) insight.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory J. Morrow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Morrow, G.J. (2019). Laws Relating Runs, Long Runs, and Steps in Gambler’s Ruin, with Persistence in Two Strata. In: Andrews, G., Krattenthaler, C., Krinik, A. (eds) Lattice Path Combinatorics and Applications. Developments in Mathematics, vol 58. Springer, Cham. https://doi.org/10.1007/978-3-030-11102-1_16

Download citation

Publish with us

Policies and ethics