Skip to main content

Some Tilings, Colorings and Lattice Paths via Stern Polynomials

  • Chapter
  • First Online:
Lattice Path Combinatorics and Applications

Part of the book series: Developments in Mathematics ((DEVM,volume 58))

  • 1073 Accesses

Abstract

We use certain subsequences of two different but related types of generalized Stern polynomials to characterize all lattice paths, with specific restrictions, that go from the origin to the line \(x+y=n\) in the first quadrant of the xy-plane. The first kind of lattice paths can also be interpreted as tilings with squares and dominoes in one case and “black and white” colorings in another case. The second kind of lattice paths is certain weighted Delannoy paths; from our analysis, we obtain results on weighted Delannoy numbers and extensions with polynomial weights. Finally, we establish some connections with Jacobi polynomials.

Research supported in part by the Natural Sciences and Engineering Research Council of Canada, Grant # 145628481.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amdeberhan, T., Chen, X., Moll, V.H., Sagan, B.E.: Generalized Fibonacci polynomials and Fibonomial coefficients. Ann. Comb. 18(4), 541–562 (2014)

    Article  MathSciNet  Google Scholar 

  2. Banderier, C., Schwer, S.: Why Delannoy numbers? J. Stat. Plan. Inference 135(1), 40–54 (2005)

    Article  MathSciNet  Google Scholar 

  3. Bates, B., Mansour, T.: The \(q\)-Calkin-Wilf tree. J. Combin. Theory Ser. A 118, 1143–1151 (2011)

    Article  MathSciNet  Google Scholar 

  4. Benjamin, A.T, Quinn, J.J.: Proofs that Really Count. The Art of Combinatorial Proof. The Dolciani Mathematical Expositions, vol. 27. Mathematical Association of America, Washington (2003)

    Google Scholar 

  5. Calkin, C., Wilf, H.S.: Recounting the rationals. Am. Math. Mon. 107(4), 360–363 (2000)

    Article  MathSciNet  Google Scholar 

  6. Carlitz, L.: A problem in partitions related to the Stirling numbers. Bull. Am. Math. Soc. 70, 275–278 (1964)

    Article  MathSciNet  Google Scholar 

  7. Cigler, J.: Some remarks and conjectures related to lattice paths in strips along the \(x\)-axis (2015). http://arxiv.org/pdf/1501.04750.pdf

  8. Dilcher, K., Ericksen, L.: Reducibility and irreducibility of Stern \((0,1)\)-polynomials. Commun. Math. 22, 77–102 (2014)

    MathSciNet  MATH  Google Scholar 

  9. Dilcher, K., Ericksen, L.: Hyperbinary expansions and Stern polynomials. Electron. J. Combin. 22(2), 18 (2015). Article 2.24

    Google Scholar 

  10. Dilcher, K., Ericksen, L.: Factors and irreducibility of generalized Stern polynomials. Integers 15, 17 (2015). Article A50

    Google Scholar 

  11. Dilcher, K., Ericksen, L.: Generalized Stern polynomials and hyperbinary representations. Bull. Pol. Acad. Sci. Math. 65, 11–28 (2017)

    Article  MathSciNet  Google Scholar 

  12. Dilcher, K., Stolarsky, K.B.: A polynomial analogue to the Stern sequence. Int. J. Number Theory 3, 85–103 (2007)

    Article  MathSciNet  Google Scholar 

  13. Dilcher, K., Stolarsky, K.B.: Stern polynomials and double-limit continued fractions. Acta Arith. 140, 119–134 (2009)

    Article  MathSciNet  Google Scholar 

  14. Dilcher, K., Kidwai, M., Tomkins, H.: Zeros and irreducibility of Stern polynomials. Publ. Math. Debrecen 90(3–4), 407–433 (2017)

    Article  MathSciNet  Google Scholar 

  15. Dziemiańczuk, M.: Generalizing Delannoy numbers via counting weighted lattice paths. Integers 13, 3 (2013). Article A54

    Google Scholar 

  16. Fray, R.D., Roselle, D.P.: Weighted lattice paths. Pac. J. Math. 37, 85–96 (1971)

    Article  MathSciNet  Google Scholar 

  17. Hetyei, G.: Central Delannoy numbers and balanced Cohen-Macaulay complexes. Ann. Comb. 10(4), 443–462 (2006)

    Article  MathSciNet  Google Scholar 

  18. Klavžar, S., Milutinović, U., Petr, C.: Stern polynomials. Adv. Appl. Math. 39, 86–95 (2007)

    Article  MathSciNet  Google Scholar 

  19. Lehmer, D.H.: On Stern’s diatomic series. Am. Math. Mon. 36, 59–67 (1929)

    Article  MathSciNet  Google Scholar 

  20. Lucas, É.: Théorie des fonctions numériques simplement périodiques. Am. J. Math. 1, 184–196; 197–240; 289–321 (1878). English translation http://www.fq.math.ca/Books/Complete/simply-periodic.pdf

  21. Noble, R.: Asymptotics of the weighted Delannoy numbers. Int. J. Number Theory 8(1), 175–188 (2012)

    Article  MathSciNet  Google Scholar 

  22. OEIS Foundation Inc. (2011): The On-Line Encyclopedia of Integer Sequences. http://oeis.org

  23. Olver, F.W.J., et al. (eds.): NIST Handbook of Mathematical Functions. Cambridge University Press, New York (2010)

    Google Scholar 

  24. Reznick, B.: Some binary partition functions. In: Berndt, B.C., et al. (eds.) Analytic Number Theory, Proceedings of a conference in honor of Paul T. Bateman, pp. 451–477. Birkhäuser, Boston (1990)

    Google Scholar 

  25. Schinzel, A.: On the factors of Stern polynomials (remarks on the preceding paper of M. Ulas). Publ. Math. Debrecen 79, 83–88 (2011)

    Google Scholar 

  26. Schinzel, A.: Stern polynomials as numerators of continued fractions. Bull. Pol. Acad. Sci. Math. 62(1), 23–27 (2014)

    Article  MathSciNet  Google Scholar 

  27. Stanley, R.P., Wilf, H.S.: Refining the Stern diatomic sequence. Preprint (2010). Electronically available at http://www-math.mit.edu/~rstan/papers/stern.pdf

  28. Ulas, M.: On certain arithmetic properties of Stern polynomials. Publ. Math. Debrecen 79(1–2), 55–81 (2011)

    Article  MathSciNet  Google Scholar 

  29. Ulas, M.: Arithmetic properties of the sequence of degrees of Stern polynomials and related results. Int. J. Number Theory 8, 669–687 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Larry Ericksen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dilcher, K., Ericksen, L. (2019). Some Tilings, Colorings and Lattice Paths via Stern Polynomials. In: Andrews, G., Krattenthaler, C., Krinik, A. (eds) Lattice Path Combinatorics and Applications. Developments in Mathematics, vol 58. Springer, Cham. https://doi.org/10.1007/978-3-030-11102-1_11

Download citation

Publish with us

Policies and ethics