Advertisement

Unveiling Stem Cell Heterogeneity Toward the Development of Salivary Gland Regenerative Strategies

  • Ganokon Urkasemsin
  • Joao N. FerreiraEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1123)

Abstract

Epithelial damage in the salivary gland (SG) resulting in irreversible dry mouth can be commonly induced by gamma radiation therapy. This radiation depletes the SG stem/progenitor cell niche slowing healing and natural gland regeneration. Biologists have been focused in understanding the development and differentiation of epithelial stem and progenitor cell niches during SG organogenesis. These organogenesis studies gave insights into novel cell-based therapies to recreate the three-dimensional (3D) salivary gland (SG) organ, recapitulate the SG native physiology, and restore saliva secretion. Such therapeutical strategies apply techniques that assemble, in a 3D organotypic culture, progenitor and stem cell lines to develop SG organ-like organoids or mini-transplants. Future studies will employ a combination of organoids, decellularized matrices, and smart biomaterials to create viable and functional SG transplants to repair the site of SG injury and reestablish saliva production.

Keywords

Exocrine glands Salivary glands Radiotherapy Sjögren’s syndrome Hypofunction Dry mouth Xerostomia Regenerative medicine Tissue engineering Epithelial cell Progenitor cell Stem cell Three-dimensional cultures Bio-printing 

References

  1. 1.
    von Bultzingslowen I, Sollecito TP, Fox PC et al (2007) Salivary dysfunction associated with systemic diseases: systematic review and clinical management recommendations. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 103(Suppl 57):e51–e15Google Scholar
  2. 2.
    Wijers OB, Levendag PC, Braaksma MM et al (2002) Patients with head and neck cancer cured by radiation therapy: a survey of the dry mouth syndrome in long-term survivors. Head Neck 24(8):737–747CrossRefPubMedGoogle Scholar
  3. 3.
    Nutting CM, Morden JP, Harrington KJ et al (2011) Parotid-sparing intensity modulated versus conventional radiotherapy in head and neck cancer (PARSPORT): a phase 3 multicentre randomised controlled trial. Lancet Oncol 12(2):127–136CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Vissink A, Mitchell JB, Baum BJ et al (2010) Clinical management of salivary gland hypofunction and xerostomia in head-and-neck cancer patients: successes and barriers. Int J Radiat Oncol Biol Phys 78(4):983–991CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Grundmann O, Mitchell GC, Limesand KH (2009) Sensitivity of salivary glands to radiation: from animal models to therapies. J Dent Res 88(10):894–903CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Baum BJ (1993) Principles of saliva secretion. Ann N Y Acad Sci 694:17–23CrossRefPubMedGoogle Scholar
  7. 7.
    Baum BJ, Zheng C, Alevizos I et al (2010) Development of a gene transfer-based treatment for radiation-induced salivary hypofunction. Oral Oncol 46(1):4–8CrossRefPubMedGoogle Scholar
  8. 8.
    Lombaert IM, Hoffman MP (2013) Stem cells in salivary gland development and regeneration. In: Huang GT-J, Thesleff I (eds) Stem cells in craniofacial development and regeneration, vol 1. Wiley, Hoboken, pp 271–284CrossRefGoogle Scholar
  9. 9.
    Lombaert IM, Brunsting JF, Wierenga PK et al (2008) Rescue of salivary gland function after stem cell transplantation in irradiated glands. PLoS One 3(4):e2063CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Coppes RP, Stokman MA (2011) Stem cells and the repair of radiation-induced salivary gland damage. Oral Dis 17(2):143–153CrossRefPubMedGoogle Scholar
  11. 11.
    Nanduri LS, Lombaert IM, van der Zwaag M et al (2013) Salisphere derived c-kit+ cell transplantation restores tissue homeostasis in irradiated salivary gland. Radiother Oncol 108(3):458–463CrossRefPubMedGoogle Scholar
  12. 12.
    Nanduri LS, Baanstra M, Faber H et al (2014) Purification and ex vivo expansion of fully functional salivary gland stem cells. Stem Cell Reports 3(6):957–964CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Ogawa M, Oshima M, Imamura A et al (2013) Functional salivary gland regeneration by transplantation of a bioengineered organ germ. Nat Commun 4:2498CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Maria OM, Maria O, Liu Y et al (2011) Matrigel improves functional properties of human submandibular salivary gland cell line. Int J Biochem Cell Biol 43(4):622–631CrossRefPubMedGoogle Scholar
  15. 15.
    Maria OM, Zeitouni A, Gologan O et al (2011) Matrigel improves functional properties of primary human salivary gland cells. Tissue Eng Part A 17(9–10):1229–1238CrossRefPubMedGoogle Scholar
  16. 16.
    Lim JY, Yi T, Lee S et al (2015) Establishment and characterization of mesenchymal stem cell-like clonal stem cells from mouse salivary glands. Tissue Eng Part C Methods 21(5):447–457CrossRefPubMedGoogle Scholar
  17. 17.
    Feng J, van der Zwaag M, Stokman MA et al (2009) Isolation and characterization of human salivary gland cells for stem cell transplantation to reduce radiation-induced hyposalivation. Radiother Oncol 92(3):466–471CrossRefPubMedGoogle Scholar
  18. 18.
    Pradhan S, Zhang C, Jia X et al (2009) Perlecan domain IV peptide stimulates salivary gland cell assembly in vitro. Tissue Eng Part A 15(11):3309–3320CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Jean-Gilles R, Soscia D, Sequeira S et al (2010) Novel modeling approach to generate a polymeric nanofiber scaffold for salivary gland cells. J Nanotechnol Eng Med 1(3):31008CrossRefPubMedGoogle Scholar
  20. 20.
    Soscia DA, Sequeira SJ, Schramm RA et al (2013) Salivary gland cell differentiation and organization on micropatterned PLGA nanofiber craters. Biomaterials 34(28):6773–6784CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Cantara SI, Soscia DA, Sequeira SJ et al (2012) Selective functionalization of nanofiber scaffolds to regulate salivary gland epithelial cell proliferation and polarity. Biomaterials 33(33):8372–8382CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Pradhan-Bhatt S, Harrington DA, Duncan RL et al (2013) Implantable three-dimensional salivary spheroid assemblies demonstrate fluid and protein secretory responses to neurotransmitters. Tissue Eng Part A 19(13–14):1610–1620CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Maruyama CL, Leigh NJ, Nelson JW et al (2015) Stem cell-soluble signals enhance multilumen formation in SMG cell clusters. J Dent Res 94(11):1610–1617CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Sugito T, Kagami H, Hata K et al (2004) Transplantation of cultured salivary gland cells into an atrophic salivary gland. Cell Transplant 13(6):691–699CrossRefPubMedGoogle Scholar
  25. 25.
    Lim JY, Yi T, Choi JS et al (2013) Intraglandular transplantation of bone marrow-derived clonal mesenchymal stem cells for amelioration of post-irradiation salivary gland damage. Oral Oncol 49(2):136–143CrossRefPubMedGoogle Scholar
  26. 26.
    Tran SD, Liu Y, Xia D et al (2013) Paracrine effects of bone marrow soup restore organ function, regeneration, and repair in salivary glands damaged by irradiation. PLoS One 8(4):e61632CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Aframian DJ, Palmon A (2008) Current status of the development of an artificial salivary gland. Tissue Eng Part B Rev 14(2):187–198CrossRefPubMedGoogle Scholar
  28. 28.
    Leong KG, Wang BE, Johnson L et al (2008) Generation of a prostate from a single adult stem cell. Nature 456(7223):804–808CrossRefPubMedGoogle Scholar
  29. 29.
    Kajstura J, Rota M, Hall SR et al (2011) Evidence for human lung stem cells. N Engl J Med 364(19):1795–1806CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Haisler WL, Timm DM, Gage JA et al (2013) Three-dimensional cell culturing by magnetic levitation. Nat Protoc 8(10):1940–1949CrossRefPubMedGoogle Scholar
  31. 31.
    Souza GR, Molina JR, Raphael RM et al (2010) Three-dimensional tissue culture based on magnetic cell levitation. Nat Nanotechnol 5(4):291–296CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Lee JS, Morrisett JD, Tung CH (2012) Detection of hydroxyapatite in calcified cardiovascular tissues. Atherosclerosis 224(2):340–347CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Daquinag AC, Souza GR, Kolonin MG (2013) Adipose tissue engineering in three-dimensional levitation tissue culture system based on magnetic nanoparticles. Tissue Eng Part C Methods 19(5):336–344CrossRefPubMedGoogle Scholar
  34. 34.
    Tseng H, Gage JA, Raphael RM et al (2013) Assembly of a three-dimensional multitype bronchiole coculture model using magnetic levitation. Tissue Eng Part C Methods 19(9):665–675CrossRefPubMedGoogle Scholar
  35. 35.
    Jaganathan H, Gage J, Leonard F et al (2014) Three-dimensional in vitro co-culture model of breast tumor using magnetic levitation. Sci Rep 4:6468CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Tseng H, Balaoing LR, Grigoryan B et al (2014) A three-dimensional co-culture model of the aortic valve using magnetic levitation. Acta Biomater 10(1):173–182CrossRefPubMedGoogle Scholar
  37. 37.
    Pisciotta A, Carnevale G, Meloni S et al (2015) Human dental pulp stem cells (hDPSCs): isolation, enrichment and comparative differentiation of two sub-populations. BMC Dev Biol 15:14CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Karamzadeh R, Eslaminejad MB, Aflatoonian R (2012) Isolation, characterization and comparative differentiation of human dental pulp stem cells derived from permanent teeth by using two different methods. J Vis Exp 69:pii: 4372Google Scholar
  39. 39.
    Neumann Y, David R, Stiubea-Cohen R et al (2012) Long-term cryopreservation model of rat salivary gland stem cells for future therapy in irradiated head and neck cancer patients. Tissue Eng Part C Methods 18(9):710–718CrossRefPubMedGoogle Scholar
  40. 40.
    Lombaert IM, Abrams SR, Li L et al (2013) Combined kit and Fgfr2b signaling regulates epithelial progenitor expansion during organogenesis. Stem Cell Reports 1(6):604–619CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Petiot A, Conti FJ, Grose R et al (2003) A crucial role for Fgfr2-IIIb signalling in epidermal development and hair follicle patterning. Development 130(22):5493–5501CrossRefPubMedGoogle Scholar
  42. 42.
    De Moerlooze L, Spencer-Dene B, Revest JM et al (2000) An important role for the IIIb isoform of fibroblast growth factor receptor 2 (Fgfr2) in mesenchymal-epithelial signalling during mouse organogenesis. Development 127(3):483–492PubMedGoogle Scholar
  43. 43.
    Knox SM, Lombaert IM, Haddox CL et al (2013) Parasympathetic innervation improves epithelial organ regeneration. Nat Commun 4:1494CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Pradhan-Bhatt S, Harrington DA, Duncan RL et al (2014) A novel in vivo model for evaluating functional restoration of a tissue-engineered salivary gland. Laryngoscope 124(2):456–461CrossRefPubMedGoogle Scholar
  45. 45.
    Rotter N, Oder J, Schlenke P et al (2008) Isolation and characterization of adult stem cells from human salivary glands. Stem Cells Dev 17(3):509–518CrossRefPubMedGoogle Scholar
  46. 46.
    Knox SM, Lombaert IM, Reed X et al (2010) Parasympathetic innervation maintains epithelial progenitor cells during salivary organogenesis. Science 329(5999):1645–1647CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Ferreira JN, Hoffman MP (2013) Interactions between developing nerves and salivary glands. Organ 9(3):199–205Google Scholar
  48. 48.
    Jang SI, Ong HL, Gallo A et al (2015) Establishment of functional acinar-like cultures from human salivary glands. J Dent Res 94(2):304–311CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Lombaert IM, Wierenga PK, Kok T et al (2006) Mobilization of bone marrow stem cells by granulocyte colony-stimulating factor ameliorates radiation-induced damage to salivary glands. Clin Cancer Res 12(6):1804–1812CrossRefPubMedGoogle Scholar
  50. 50.
    Lin CY, Lee BS, Liao CC et al (2007) Transdifferentiation of bone marrow stem cells into acinar cells using a double chamber system. J Formos Med Assoc 106(1):1–7CrossRefPubMedGoogle Scholar
  51. 51.
    Lim JY, Ra JC, Shin IS et al (2013) Systemic transplantation of human adipose tissue-derived mesenchymal stem cells for the regeneration of irradiation-induced salivary gland damage. PLoS One 8(8):e71167CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Pradhan S, Liu C, Zhang C et al (2010) Lumen formation in three-dimensional cultures of salivary acinar cells. Otolaryng Head Neck 142(2):191–195CrossRefGoogle Scholar
  53. 53.
    Sequeira SJ, Soscia DA, Oztan B et al (2012) The regulation of focal adhesion complex formation and salivary gland epithelial cell organization by nanofibrous plga scaffolds. Biomaterials 33(11):3175–3186CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Vissink A, van Luijk P, Langendijk JA et al (2015) Current ideas to reduce or salvage radiation damage to salivary glands. Oral Dis 21(1):1–10CrossRefGoogle Scholar
  55. 55.
    van Luijk P, Pringle S, Deasy JO et al (2015) Sparing the region of the salivary gland containing stem cells preserves saliva production after radiotherapy for head and neck cancer. Sci Transl Med 7(305):305ra147CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Tseng H, Gage JA, Shen T et al (2015) A spheroid toxicity assay using magnetic 3D bioprinting and real-time mobile device-based imaging. Sci Rep 5:13987CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Adine C, Ng KK, Rungarunlert S, Souza GR, Ferreira JN (2018) Engineering innervated secretory epithelial organoids by magnetic three-dimensional bioprinting for stimulating epithelial growth in salivary glands. Biomaterials 180:52–66CrossRefPubMedGoogle Scholar
  58. 58.
    Gao Z, Wu T, Xu J et al (2014) Generation of bioartificial salivary gland using whole-organ Decellularized bioscaffold. Cells Tissues Organs 200(3–4):171–180CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of Veterinary Science, Department of Preclinical and Applied Animal ScienceMahidol UniversityNakhon PathomThailand
  2. 2.Center of Excellence in Regenerative Dentistry, Faculty of DentistryChulalongkorn UniversityBangkokThailand
  3. 3.National University of SingaporeSingaporeSingapore

Personalised recommendations