Advertisement

Planarian Stem Cell Heterogeneity

  • Salvetti Alessandra
  • Leonardo RossiEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1123)

Abstract

Planarian (Platyhelminthes, Triclads) are free-living flatworms endowed with extraordinary regenerative capabilities, i.e., the ability to rebuild any missing body parts also from small fragments. Planarian regenerative capabilities fascinated scientific community since early 1800, including high-standing scientists such as J.T. Morgan and C. M. Child. Today, it is known that planarian regeneration is due to the presence of a wide population of stem cells, the so-called neoblasts. However, the understanding of the nature of cells orchestrating planarian regeneration was a long journey, and several questions still remain unanswered. In this chapter, beginning from the definition of the classical concept of neoblast, we review progressive discoveries that have brought to the modern view of these cells as a highly heterogeneous population of stem cells including pluripotent stem cells and undifferentiated populations of committed progenies.

Keywords

Planarian Stem cells Neoblast Regeneration Committed progeny Platyhelminthes Piwi Flatworms Clonogenic neoblast σ-Neoblasts ζ-Neoblasts Tetraspanin 

References

  1. 1.
    Randolph H (1897) Observations and experiments on regeneration in planarians. Arch Entwickl Mech Org 5:352–372CrossRefGoogle Scholar
  2. 2.
    Hyman LH (1951) The invertebrates: Platyhelminthes and Rhynchocoela the acoelomatebilateria. McGraw-Hill, New YorkGoogle Scholar
  3. 3.
    Hori I (1992) Cytological approach to morphogenesis in the planarian blastema. I. Cell behavior during blastema formation. J Submicrosc Cytol Pathol 24:75–84Google Scholar
  4. 4.
    Morita M (1967) Observations on the fine structure of the neoblast and its cell division in the regenerating planaria. Sci Rep Tohoku Univ 33:399–406Google Scholar
  5. 5.
    Pedersen KJ (1959) Cytological studies on the planarian neoblast. Z Zellforsch Mikrosk Anat 50:799–817CrossRefGoogle Scholar
  6. 6.
    Coward SJ (1974) Chromatoid bodies in somatic cells of the planarian: observations on their behavior during mitosis. Anat Rec 180:533–545CrossRefGoogle Scholar
  7. 7.
    Hay ED, Coward SJ (1975) Fine structure studies on the planarian, Dugesia. I. Nature of the "neoblast" and other cell types in noninjured worms. J Ultrastruct Res 50:1–21CrossRefGoogle Scholar
  8. 8.
    Hori I (1982) An ultrastructural study of the chromatoid body in planarian regenerative cells. J Electron Microsc (Tokyo) 31:63–72Google Scholar
  9. 9.
    Morita M, Best JB, Noel J (1969) Electron microscopic studies of planarian regeneration. I. Fine structure of neoblasts in Dugesia dorotocephala. J Ultrastruct Res 27:7–23CrossRefGoogle Scholar
  10. 10.
    Strome S, Updike D (2015) Specifying and protecting germ cell fate. Nat Rev Mol Cell Biol 16:406–416CrossRefGoogle Scholar
  11. 11.
    Fernandéz-Taboada E, Moritz S, Zeuschner D et al (2010) Smed-SmB, a member of the LSm protein superfamily, is essential for chromatoid body organization and planarian stem cell proliferation. Development 137:1055–1065CrossRefGoogle Scholar
  12. 12.
    Solana J, Lasko P, Romero R (2009) Spoltud-1 is a chromatoid body component required for planarian long-term stem cell self-renewal. Dev Biol 328:410–421CrossRefGoogle Scholar
  13. 13.
    Yoshida-Kashikawa M, Shibata N, Takechi K et al (2007) DjCBC-1, a conserved DEAD box RNA helicase of the RCK/p54/Me31B family, is a component of RNA-protein complexes in planarian stem cells and neurons. Dev Dyn 236:3436–3450CrossRefGoogle Scholar
  14. 14.
    Kashima M, Kumagai N, Agata K et al (2016) Heterogeneity of chromatoid bodies in adult pluripotent stem cells of planarian Dugesia japonica. Dev Growth Differ 58:225–237CrossRefGoogle Scholar
  15. 15.
    Juliano CE, Swartz SZ, Wessel GM (2010) A conserved germline multipotency program. Development 137:4113–4126CrossRefGoogle Scholar
  16. 16.
    Rouhana L, Vieira AP, Roberts-Galbraith RH et al (2012) PRMT5 and the role of symmetrical dimethylarginine in chromatoid bodies of planarian stem cells. Development 139:1083–1094CrossRefGoogle Scholar
  17. 17.
    Rossi L, Salvetti A, Batistoni R et al (2008) Planarians, a tale of stem cells. Cell Mol Life Sci 65:16–23CrossRefGoogle Scholar
  18. 18.
    Hayashi T, Asami M, Higuchi S et al (2006) Isolation of planarian X-ray-sensitive stem cells by fluorescence-activated cell sorting. Dev Growth Differ 48:371–380CrossRefGoogle Scholar
  19. 19.
    Baguñà J (1976) Mitosis in the intact and regenerating planarian Dugesia mediterranea n.sp. I. Mitotic studies during growth feeding and starvation. J Exp Zool 195:53–64CrossRefGoogle Scholar
  20. 20.
    Newmark PA, Sanchez Alvarado A (2000) Bromodeoxyuridine specifically labels the regenerative stem cells of planarians. Dev Biol 220:142–153CrossRefGoogle Scholar
  21. 21.
    Orii H, Sakurai T, Watanabe K (2005) Distribution of the stem cells (neoblasts) in the planarian Dugesia japonica. Dev Genes Evol 215:143–157CrossRefGoogle Scholar
  22. 22.
    Salvetti A, Rossi L, Deri P et al (2000) An MCM2-related gene is expressed in proliferating cells of intact and regenerating planarians. Dev Dyn 218:603–614CrossRefGoogle Scholar
  23. 23.
    Solana J, Kao D, Mihaylova Y et al (2012) Defining the molecular profile of planarian pluripotent stem cells using a combinatorial RNAseq, RNA interference and irradiation approach. Genome Biol 13:R19CrossRefGoogle Scholar
  24. 24.
    Rossi L, Bonuccelli L, Iacopetti P et al (2014) Prohibitin 2 regulates cell proliferation and mitochondrial cristae morphogenesis in planarian stem cells. Stem Cell Rev 10:871–887CrossRefGoogle Scholar
  25. 25.
    Guo T, Peters AH, Newmark PA (2006) A Bruno-like gene is required for stem cell maintenance in planarians. Dev Cell 11:159–169CrossRefGoogle Scholar
  26. 26.
    Reddien PW, Oviedo NJ, Jennings JR et al (2005) SMEDWI-2 is a PIWI-like protein that regulates planarian stem cells. Science 310:1327–1330CrossRefGoogle Scholar
  27. 27.
    Salvetti A, Rossi L, Lena A et al (2005) DjPum, a homologue of Drosophila Pumilio, is essential to planarian stem cell maintenance. Development 132:1863–1874CrossRefGoogle Scholar
  28. 28.
    Shibata N, Umesono Y, Orii H et al (1999) Expression of vasa(vas)-related genes in germline cells and totipotent somatic stem cells of planarians. Dev Biol 206:73–87CrossRefGoogle Scholar
  29. 29.
    Chandebois R (1980) The dynamics of wound closure and its role in the programming of planarian regeneration. II—distalization. Dev Growth Differ 22:693–704CrossRefGoogle Scholar
  30. 30.
    Hori I (1989) Observations on planarian epithelization after wounding. J Submicrosc Cytol Pathol 21:307–315PubMedGoogle Scholar
  31. 31.
    Pellettieri J, Fitzgerald P, Watanabe S et al (2010) Cell death and tissue remodeling in planarian regeneration. Dev Biol 338:76–85CrossRefGoogle Scholar
  32. 32.
    Wenemoser D, Reddien PW (2010) Planarian regeneration involves distinct stem cell responses to wounds and tissue absence. Dev Biol 344:979–991CrossRefGoogle Scholar
  33. 33.
    Baguñà J (2018) Planarian regeneration between 1960s and 1990s: From skilful baffled ancestors to bold integrative descendants. A personal account. Semin Cell Dev Biol.  https://doi.org/10.1016/j.semcdb.2018.04.011 CrossRefGoogle Scholar
  34. 34.
    Higuchi S, Hayashi T, Hori I et al (2007) Characterization and categorization of fluorescence activated cell sorted planarian stem cells by ultrastructural analysis. Dev Growth Differ 49:571–581CrossRefGoogle Scholar
  35. 35.
    Rossi L, Salvetti A, Lena A et al (2006) DjPiwi-1, a member of the PAZ-Piwi gene family, defines a subpopulation of planarian stem cells. Dev Genes Evol 216:335–346CrossRefGoogle Scholar
  36. 36.
    Rossi L, Salvetti A, Marincola FM et al (2007) Deciphering the molecular machinery of stem cells: a look at the neoblast gene expression profile. Genome Biol 8:R62CrossRefGoogle Scholar
  37. 37.
    Sato K, Shibata N, Orii H et al (2006) Identification and origin of the germline stem cells as revealed by the expression of nanos related gene in planarians. Dev Growth Differ 48:615–628CrossRefGoogle Scholar
  38. 38.
    Handberg-Thorsager M, Salo E (2007) The planarian nanos-like gene Smednos is expressed in germline and eye precursor cells during development and regeneration. Dev Genes Evol 217:403–411CrossRefGoogle Scholar
  39. 39.
    Salvetti A, Rossi L, Bonuccelli L et al (2009) Adult stem cell plasticity: neoblast repopulation in non-lethally irradiated planarians. Dev Biol 328:305–314CrossRefGoogle Scholar
  40. 40.
    Wagner DE, Wang IE, Reddien PW (2011) Clonogenic neoblasts are pluripotent adult stem cells that underlie planarian regeneration. Science 332:811–816CrossRefGoogle Scholar
  41. 41.
    Reddien PW (2013) Specialized progenitors and regeneration. Development 140:951–957CrossRefGoogle Scholar
  42. 42.
    Scimone ML, Kravarik KM, Lapan SW et al (2014) Neoblast specialization in regeneration of the planarian Schmidtea mediterranea. Stem Cell Rep 3:339–352CrossRefGoogle Scholar
  43. 43.
    Lapan SW, Reddien PW (2012) Transcriptome analysis of the planarian eye identifies ovo as a specific regulator of eye regeneration. Cell Rep 2:294–307CrossRefGoogle Scholar
  44. 44.
    Scimone ML, Srivastava M, Bell GW et al (2011) A regulatory program for excretory system regeneration in planarians. Development 138:4387–4398CrossRefGoogle Scholar
  45. 45.
    Currie KW, Pearson BJ (2013) Transcription factors lhx1/5-1 and pitx are required for the maintenance and regeneration of serotonergic neurons in planarians. Development 140:3577–3588CrossRefGoogle Scholar
  46. 46.
    Cowles MW, Brown DD, Nisperos SV et al (2013) Genome-wide analysis of the bHLH gene family in planarians identifies factors required for adult neurogenesis and neuronal regeneration. Development 140:4691–4702CrossRefGoogle Scholar
  47. 47.
    Adler CE, Seidel CW, McKinney SA et al (2014) Selective amputation of the pharynx identifies a FoxA-dependent regeneration program in planaria. Elife 3:e02238CrossRefGoogle Scholar
  48. 48.
    Scimone ML, Lapan SW, Reddien PW (2014) A forkhead transcription factor is wound-induced at the planarian midline and required for anterior pole regeneration. PLoS Genet 10:e1003999CrossRefGoogle Scholar
  49. 49.
    Vásquez-Doorman C, Petersen CP (2014) zic-1 expression in planarian neoblasts after injury controls anterior pole regeneration. PLoS Genet 10:e1004452CrossRefGoogle Scholar
  50. 50.
    Flores NM, Oviedo NJ, Sage J (2016) Essential role for the planarian intestinal GATA transcription factor in stem cells and regeneration. Dev Biol 418:179–188CrossRefGoogle Scholar
  51. 51.
    Zhu SJ, Pearson BJ (2016) (Neo)blast from the past: new insights into planarian stem cell lineages. Curr Opin Genet Dev 40:74–80CrossRefGoogle Scholar
  52. 52.
    van Wolfswinkel JC, Wagner DE, Reddien PW (2014) Single-cell analysis reveals functionally distinct classes within the planarian stem cell compartment. Cell Stem Cell 15:326–339CrossRefGoogle Scholar
  53. 53.
    Fincher CT, Wurtzel O, de Hoog T et al (2018) Cell type transcriptome atlas for the planarian Schmidtea mediterranea. Science 360:eaaq1736CrossRefGoogle Scholar
  54. 54.
    Zeng A, Li H, Guo L, Gao X et al (2018) Prospectively isolated tetraspanin(+) neoblasts are adult pluripotent stem cells underlying planaria regeneration. Cell 173:1593–1608.e20CrossRefGoogle Scholar
  55. 55.
    Forsthoefel DJ, James NP, Escobar DJ et al (2012) An RNAi screen reveals intestinal regulators of branching morphogenesis, differentiation, and stem cell proliferation in planarians. Dev Cell 23:691–704CrossRefGoogle Scholar
  56. 56.
    Eisenhoffer GT, Kang H, Sánchez Alvarado A (2008) Molecular analysis of stem cells and their descendants during cell turnover and regeneration in the planarian Schmidtea mediterranea. Cell Stem Cell 3:327–339CrossRefGoogle Scholar
  57. 57.
    Lai AG, Kosaka N, Abnave P et al (2018) The abrogation of condensin function provides independent evidence for defining the self-renewing population of pluripotent stem cells. Dev Biol 433:218–226CrossRefGoogle Scholar
  58. 58.
    Sahu S, Dattani A, Aboobaker AA (2017) Secrets from immortal worms: What can we learn about biological ageing from the planarian model system? Semin Cell Dev Biol 70:108–121CrossRefGoogle Scholar
  59. 59.
    Rossi L, Salvetti A (2018) Planarian stem cell niche, the challenge for understanding tissue regeneration. Semin Cell Dev Biol.  https://doi.org/10.1016/j.semcdb.2018.03.005 CrossRefGoogle Scholar
  60. 60.
    Dattani A, Sridhar D, Aziz Aboobaker A (2018) Planarian flatworms as a new model system for understanding the epigenetic regulation of stem cell pluripotency and differentiation. Semin Cell Dev Biol.  https://doi.org/10.1016/j.semcdb.2018.04.007 CrossRefGoogle Scholar
  61. 61.
    Felix DA, Gutiérrez-Gutiérrez Ó, Espada L et al (2018) It is not all about regeneration: planarians striking power to stand starvation. Semin Cell Dev Biol.  https://doi.org/10.1016/j.semcdb.2018.04.010 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly

Personalised recommendations