Progenitor Cell Heterogeneity in the Adult Carotid Body Germinal Niche

  • Verónica Sobrino
  • Valentina Annese
  • Ricardo PardalEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1123)


Somatic stem cells confer plasticity to adult tissues, permitting their maintenance, repair and adaptation to a changing environment. Adult germinal niches supporting somatic stem cells have been thoroughly characterized throughout the organism, including in central and peripheral nervous systems. Stem cells do not reside alone within their niches, but they are rather accompanied by multiple progenitor cells that not only contribute to the progression of stem cell lineage but also regulate their behavior. Understanding the mechanisms underlying these interactions within the niche is crucial to comprehend associated pathologies and to use stem cells in cell therapy. We have described a stunning germinal niche in the adult peripheral nervous system: the carotid body. This is a chemoreceptor organ with a crucial function during physiological adaptation to hypoxia. We have shown the presence of multipotent stem cells within this niche, escorted by multiple restricted progenitor cell types that contribute to niche physiology and hence organismal adaptation to the lack of oxygen. Herein, we discuss new and existing data about the nature of all these stem and progenitor cell types present in the carotid body germinal niche, discussing their role in physiology and their clinical relevance for the treatment of diverse pathologies.


Tissue-specific or somatic stem cells Germinal niche Neurogenesis Angiogenesis Dopaminergic neuronal cells Vascular cells Multipotency Self-renewal Proliferation Differentiation Carotid body physiology Peripheral sympathetic nervous system Neuroblasts Mesectoderm-restricted progenitors Neural crest 


  1. 1.
    Kempermann G, Gage FH (1999) New nerve cells for the adult brain. Sci Am 280:48–53CrossRefPubMedGoogle Scholar
  2. 2.
    Bond AM, Ming GL, Song H (2015) Adult mammalian neural stem cells and neurogenesis: five decades later. Cell Stem Cell 17:385–395PubMedCentralCrossRefPubMedGoogle Scholar
  3. 3.
    Reynolds BA, Weiss S (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255:1707–1710CrossRefPubMedGoogle Scholar
  4. 4.
    Scadden DT (2014) Nice neighborhood: emerging concepts of the stem cell niche. Cell 157:41–50PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Li L, Neaves WB (2006) Normal stem cells and cancer stem cells: the niche matters. Cancer Res 66:4553–4557CrossRefPubMedGoogle Scholar
  6. 6.
    Garcia-Verdugo JM, Doetsch F, Wichterle H et al (1998) Architecture and cell types of the adult subventricular zone: in search of the stem cells. J Neurobiol 36:234–248CrossRefPubMedGoogle Scholar
  7. 7.
    Ming GL, Song H (2011) Adult neurogenesis in the Mammalian brain: significant answers and significant questions. Neuron 70:687–702PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Liu X, Wang Q, Haydar TF et al (2005) Nonsynaptic GABA signaling in postnatal subventricular zone controls proliferation of GFAP-expressing progenitors. Nat Neurosci 8:1179–1187PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Laranjeira C, Sandgren K, Kessaris N et al (2011) Glial cells in the mouse enteric nervous system can undergo neurogenesis in response to injury. J Clin Invest 121:3412–3424PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Nagoshi N, Shibata S, Kubota Y et al (2008) Ontogeny and multipotency of neural crest-derived stem cells in mouse bone marrow, dorsal root ganglia, and whisker pad. Cell Stem Cell 2:392–403CrossRefPubMedGoogle Scholar
  11. 11.
    Yoshida S, Shimmura S, Nagoshi N et al (2006) Isolation of multipotent neural crest-derived stem cells from the adult mouse cornea. Stem Cells 24:2714–2722CrossRefPubMedGoogle Scholar
  12. 12.
    Tomita Y, Matsumura K, Wakamatsu Y et al (2005) Cardiac neural crest cells contribute to the dormant multipotent stem cell in the mammalian heart. J Cell Biol 170:1135–1146PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Wong CE, Paratore C, Dours-Zimmermann MT et al (2006) Neural crest-derived cells with stem cell features can be traced back to multiple lineages in the adult skin. J Cell Biol 175:1005–1015PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Weir EK, Lopez-Barneo J, Buckler KJ et al (2005) Acute oxygen-sensing mechanisms. N Engl J Med 353:2042–2055PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    López-Barneo J, Pardal R, Ortega-Sáenz P (2001) Cellular mechanisms of oxygen sensing. Annu Rev Physiol 63:259–287CrossRefPubMedGoogle Scholar
  16. 16.
    Joseph V, Pequignot JM (2009) Breathing at high altitude. Cell Mol Life Sci 66:3565–3573CrossRefPubMedGoogle Scholar
  17. 17.
    Arias-Stella J, Valcarcel J (1976) Chief cell hyperplasia in the human carotid body at high altitudes; physiologic and pathologic significance. Hum Pathol 7:361–373CrossRefPubMedGoogle Scholar
  18. 18.
    McGregor KH, Gil J, Lahiri S (1984) A morphometric study of the carotid body in chronically hypoxic rats. J Appl Physiol 57:1430–1438CrossRefPubMedGoogle Scholar
  19. 19.
    Pardal R, Ortega-Saenz P, Duran R et al (2010) The carotid body, a neurogenic niche in the adult peripheral nervous system. Arch Ital Biol 148:95–105PubMedGoogle Scholar
  20. 20.
    Kameda Y (2002) Carotid body and glomus cells distributed in the wall of the common carotid artery in the bird. Microsc Res Tech 59:196–206CrossRefPubMedGoogle Scholar
  21. 21.
    Kameda Y (2005) Mash1 is required for glomus cell formation in the mouse carotid body. Dev Biol 283:128–139CrossRefPubMedGoogle Scholar
  22. 22.
    McDonald DM, Mitchell RA (1975) The innervation of glomus cells, ganglion cells and blood vessels in the rat carotid body: a quantitative ultrastructural analysis. J Neurocytol 4:177–230CrossRefGoogle Scholar
  23. 23.
    Pardal R, López-Barneo J (2002) Low glucose-sensing cells in the carotid body. Nat Neurosci 5:197–198CrossRefPubMedGoogle Scholar
  24. 24.
    Urena J, Fernandez-Chacon R, Benot AR et al (1994) Hypoxia induces voltage-dependent Ca2+ entry and quantal dopamine secretion in carotid body glomus cells. Proc Natl Acad Sci U S A 91:10208–10211PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Arias-Mayenco I, Gonzalez-Rodriguez P, Torres-Torrelo H et al (2018) Acute O2 sensing: role of coenzyme QH2/Q ratio and mitochondrial ROS compartmentalization. Cell Metab 28:145–158CrossRefPubMedGoogle Scholar
  26. 26.
    Fernandez-Aguera MC, Gao L, Gonzalez-Rodriguez P et al (2015) Oxygen sensing by arterial chemoreceptors depends on mitochondrial complex I signaling. Cell Metab 22:825–837CrossRefPubMedGoogle Scholar
  27. 27.
    Kameda Y (1996) Immunoelectron microscopic localization of vimentin in sustentacular cells of the carotid body and the adrenal medulla of guinea pigs. J Histochem Cytochem 44:1439–1449CrossRefPubMedGoogle Scholar
  28. 28.
    Pardal R, Ortega-Saenz P, Duran R et al (2007) Glia-like stem cells sustain physiologic neurogenesis in the adult mammalian carotid body. Cell 131:364–377CrossRefPubMedGoogle Scholar
  29. 29.
    Platero-Luengo A, Gonzalez-Granero S, Duran R et al (2014) An o2-sensitive glomus cell-stem cell synapse induces carotid body growth in chronic hypoxia. Cell 156:291–303CrossRefPubMedGoogle Scholar
  30. 30.
    Pardal R, Lopez Barneo J (2016) Mature neurons modulate neurogenesis through chemical signals acting on neural stem cells. Develop Growth Differ 58:456–462CrossRefGoogle Scholar
  31. 31.
    Chen J, He L, Liu X et al (2007) Effect of the endothelin receptor antagonist bosentan on chronic hypoxia-induced morphological and physiological changes in rat carotid body. Am J Phys Lung Cell Mol Phys 292:L1257–L1262Google Scholar
  32. 32.
    Annese V, Navarro-Guerrero E, Rodriguez-Prieto I et al (2017) Physiological plasticity of neural-crest-derived stem cells in the adult mammalian carotid body. Cell Rep 19:471–478PubMedCentralCrossRefPubMedGoogle Scholar
  33. 33.
    Navarro-Guerrero E, Platero-Luengo A, Linares-Clemente P et al (2016) Gene expression profiling supports the neural crest origin of adult rodent carotid body stem cells and identifies CD10 as a marker for mesectoderm-committed progenitors. Stem Cells 34:1637–1650CrossRefPubMedGoogle Scholar
  34. 34.
    Hellström S (1975) Morphometric studies of dense-cored vesicles in Type I cells of rat carotid body. J Neurocytol 4:77–86CrossRefPubMedGoogle Scholar
  35. 35.
    Chen IL, Yates RD (1984) Two types of glomus cell in the rat carotid body as revealed by alpha-bungarotoxin binding. J Neurocytol 13:281–302CrossRefPubMedGoogle Scholar
  36. 36.
    Sobrino V, Gonzalez-Rodriguez P, Annese V et al (2018) Fast neurogenesis from carotid body quiescent neuroblasts accelerates adaptation to hypoxia. EMBO Rep 19:e44598PubMedCentralCrossRefPubMedGoogle Scholar
  37. 37.
    Langley K, Grant NJ (1999) Molecular markers of sympathoadrenal cells. Cell Tissue Res 298:185–206CrossRefPubMedGoogle Scholar
  38. 38.
    Bonfanti L, Olive S, Poulain DA et al (1992) Mapping of the distribution of polysialylated neural cell adhesion molecule throughout the central nervous system of the adult rat: an immunohistochemical study. Neuroscience 49:419–436CrossRefPubMedGoogle Scholar
  39. 39.
    Menezes JR, Luskin MB (1994) Expression of neuron-specific tubulin defines a novel population in the proliferative layers of the developing telencephalon. J Neurosci 14:5399–5416CrossRefPubMedGoogle Scholar
  40. 40.
    Bronner-Fraser M (1987) Perturbation of cranial neural crest migration by the HNK-1 antibody. Dev Biol 123:321–331CrossRefPubMedGoogle Scholar
  41. 41.
    Nagase T, Sanai Y, Nakamura S et al (2003) Roles of HNK-1 carbohydrate epitope and its synthetic glucuronyltransferase genes on migration of rat neural crest cells. J Anat 203:77–88PubMedCentralCrossRefPubMedGoogle Scholar
  42. 42.
    Kizuka Y, Oka S (2012) Regulated expression and neural functions of human natural killer-1 (HNK-1) carbohydrate. Cell Mol Life Sci 69:4135–4147CrossRefPubMedGoogle Scholar
  43. 43.
    Erickson CA, Loring JF, Lester SM (1989) Migratory pathways of HNK-1-immunoreactive neural crest cells in the rat embryo. Dev Biol 134:112–118CrossRefPubMedGoogle Scholar
  44. 44.
    Huang M, Miller ML, McHenry LK et al (2016) Generating trunk neural crest from human pluripotent stem cells. Sci Rep 6:19727PubMedCentralCrossRefPubMedGoogle Scholar
  45. 45.
    Tucker GC, Delarue M, Zada S et al (1988) Expression of the HNK-1/NC-1 epitope in early vertebrate neurogenesis. Cell Tissue Res 251:457–465CrossRefPubMedGoogle Scholar
  46. 46.
    Kameda Y, Yamatsu Y, Kameya T (1994) Glomus cell differentiation in the carotid body region of chick embryos studied by neuron-specific class III β-tubulin isotype and Leu-7 monoclonal antibodies. J Comp Neurol 543:531–543CrossRefGoogle Scholar
  47. 47.
    Le Douarin N, Le Lièvre C, Fontaine J (1972) Experimental research on the embryologic origin of the carotid body in birds. C R Acad Sci Hebd Seances Acad Sci D 275:583–586PubMedGoogle Scholar
  48. 48.
    Kameda Y (2014) Signaling molecules and transcription factors involved in the development of the sympathetic nervous system, with special emphasis on the superior cervical ganglion. Cell Tissue Res 357:527–548CrossRefPubMedGoogle Scholar
  49. 49.
    Wang Z, Olson EBJ, Bjorling DE et al (2008) Sustained hypoxia-induced proliferation of carotid body type I cells in rats. J Appl Physiol 104:803–808CrossRefPubMedGoogle Scholar
  50. 50.
    Kaelin WG Jr, Ratcliffe PJ (2008) Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol Cell 30:393–402CrossRefPubMedGoogle Scholar
  51. 51.
    Hodson EJ, Nicholls LG, Turner PJ et al (2016) Regulation of ventilatory sensitivity and carotid body proliferation in hypoxia by the PHD2/HIF-2 pathway. J Physiol 594:1179–1195CrossRefPubMedGoogle Scholar
  52. 52.
    Macias D, Cowburn AS, Torres-Torrelo H et al (2018) HIF-2alpha is essential for carotid body development and function. elife 7:e34681PubMedCentralCrossRefPubMedGoogle Scholar
  53. 53.
    Fielding JW, Hodson EJ, Cheng X et al (2018) PHD2 inactivation in Type I cells drives HIF-2alpha dependent multi-lineage hyperplasia and the formation of paraganglioma-like carotid bodies. J Physiol. PubMedCentralCrossRefPubMedGoogle Scholar
  54. 54.
    Zhang M, Zhong H, Vollmer C et al (2000) Co-release of ATP and ACh mediates hypoxic signalling at rat carotid body chemoreceptors. J Physiol 525(Pt 1):143–158PubMedCentralCrossRefPubMedGoogle Scholar
  55. 55.
    Murali S, Nurse CA (2015) Purinergic signaling mediates bidirectional crosstalk between chemoreceptor type I and glial-like type II cells of the rat carotid body. J Physiol 2:391–406Google Scholar
  56. 56.
    Piskuric NA, Nurse CA (2013) Expanding role of ATP as a versatile messenger at carotid and aortic body chemoreceptors. J Physiol 591:415–422CrossRefPubMedGoogle Scholar
  57. 57.
    Tse A, Yan L, Lee AK et al (2012) Autocrine and paracrine actions of ATP in rat carotid body. Can J Physiol Pharmacol 90:705–711CrossRefPubMedGoogle Scholar
  58. 58.
    Wang ZY, Bisgard GE (2002) Chronic hypoxia-induced morphological and neurochemical changes in the carotid body. Microsc Res Tech 59:168–177CrossRefPubMedGoogle Scholar
  59. 59.
    Jiang X, Rowitch DH, Soriano P et al (2000) Fate of the mammalian cardiac neural crest. Development 127:1607–1616PubMedGoogle Scholar
  60. 60.
    Lam SY, Tipoe GL, Fung ML (2009) Upregulation of erythropoietin and its receptor expression in the rat carotid body during chronic and intermittent hypoxia. Adv Exp Med Biol 648:207–214CrossRefPubMedGoogle Scholar
  61. 61.
    Turner AJ, Tanzawa K (1997) Mammalian membrane metallopeptidases: NEP, ECE, KELL, and PEX. FASEB J 11:355–364CrossRefPubMedGoogle Scholar
  62. 62.
    Roques BP, Noble F, Dauge V et al (1993) Neutral endopeptidase 24.11: structure, inhibition, and experimental and clinical pharmacology. Pharmacol Rev 45:87–146PubMedGoogle Scholar
  63. 63.
    Kumar GK, Yu RK, Overholt JL et al (2000) Role of substance P in neutral endopeptidase modulation of hypoxic response of the carotid body. Adv Exp Med Biol 475:705–713CrossRefPubMedGoogle Scholar
  64. 64.
    Shi Q, Rafii S, Wu MH et al (1998) Evidence for circulating bone marrow-derived endothelial cells. Blood 92:362–367PubMedGoogle Scholar
  65. 65.
    Diaz-Flores L, Gutierrez R, Garcia MP et al (2014) CD34+ stromal cells/fibroblasts/fibrocytes/telocytes as a tissue reserve and a principal source of mesenchymal cells. Location, morphology, function and role in pathology. Histol Histopathol 29:831–870PubMedGoogle Scholar
  66. 66.
    Sowa Y, Imura T, Numajiri T et al (2013) Adipose stromal cells contain phenotypically distinct adipogenic progenitors derived from neural crest. PLoS One 8:e84206PubMedCentralCrossRefPubMedGoogle Scholar
  67. 67.
    Gao L, Ortega-Sáenz P, García-Fernández M et al (2014) Glucose sensing by carotid body glomus cells: potential implications in disease. Front Physiol 5:398PubMedCentralCrossRefPubMedGoogle Scholar
  68. 68.
    Paton JFR, Sobotka PA, Fudim M et al (2013) The carotid body as a therapeutic target for the treatment of sympathetically mediated diseases. Hypertension 61:5–13CrossRefPubMedGoogle Scholar
  69. 69.
    Cramer JA, Wiggins RH, Fudim M et al (2014) Carotid body size on CTA: correlation with comorbidities. Clin Radiol 69:e33–e36CrossRefPubMedGoogle Scholar
  70. 70.
    López-Barneo J, Macías D, Platero-Luengo A et al (2016) Carotid body oxygen sensing and adaptation to hypoxia. Pflugers Arch - Eur J Physiol 468:59–70CrossRefGoogle Scholar
  71. 71.
    McBryde FD, Abdala AP, Hendy EB et al (2013) The carotid body as a putative therapeutic target for the treatment of neurogenic hypertension. Nat Commun 4:63–68CrossRefGoogle Scholar
  72. 72.
    Del Rio R, Marcus NJ, Schultz HD (2013) Carotid chemoreceptor ablation improves survival in heart failure: rescuing autonomic control of cardiorespiratory function. J Am Coll Cardiol 62:2422–2430CrossRefPubMedGoogle Scholar
  73. 73.
    Narkiewicz K, Ratcliffe LEK, Hart EC et al (2016) Unilateral carotid body resection in resistant hypertension. JACC: Basic Transl Sci 1:313–324Google Scholar
  74. 74.
    Ribeiro MJ, Sacramento JF, Gonzalez C et al (2013) Carotid body denervation prevents the development of insulin resistance and hypertension induced by hypercaloric diets. Diabetes 62:2905–2916PubMedCentralCrossRefPubMedGoogle Scholar
  75. 75.
    Pijacka W, Moraes DJA, Ratcliffe LEK et al (2016) Purinergic receptors in the carotid body as a new drug target for controlling hypertension. Nat Med 22(10):1151–1159PubMedCentralCrossRefPubMedGoogle Scholar
  76. 76.
    Cutz E, Ma TKF, Perrin DG et al (1997) Peripheral chemoreceptors in congenital central hypoventilation syndrome. Am J Respir Crit Care Med 155:358–363CrossRefPubMedGoogle Scholar
  77. 77.
    Porzionato A, Macchi V, Stecco C et al (2013) The carotid body in Sudden Infant Death Syndrome. Respir Physiol Neurobiol 185:194–201CrossRefPubMedGoogle Scholar
  78. 78.
    Kliewer KE, Wen DR, Cancilla PA et al (1989) Paragangliomas: assessment of prognosis by histologic, immunohistochemical, and ultrastructural techniques. Hum Pathol 20:29–39CrossRefPubMedGoogle Scholar
  79. 79.
    Arias-Stella J, Bustos F (1976) Chronic hypoxia and chemodectomas in bovines at high altitudes. Arch Pathol Lab Med 100:636–639PubMedGoogle Scholar
  80. 80.
    Astrom K, Cohen JE, Willett-Brozick JE et al (2003) Altitude is a phenotypic modifier in hereditary paraganglioma type 1: evidence for an oxygen-sensing defect. Hum Genet 113:228–237CrossRefPubMedGoogle Scholar
  81. 81.
    Saldana MJ, Salem LE, Travezan R (1973) High altitude hypoxia and chemodectomas. Hum Pathol 4:251–263CrossRefPubMedGoogle Scholar
  82. 82.
    Baysal BE (2008) Clinical and molecular progress in hereditary paraganglioma. J Med Genet 45:689–694CrossRefPubMedGoogle Scholar
  83. 83.
    Rustin P, Munnich A, Rotig A (2002) Succinate dehydrogenase and human diseases: new insights into a well-known enzyme. Eur J Hum Genet 10:289–291CrossRefPubMedGoogle Scholar
  84. 84.
    Diaz-Castro B, Pintado CO, Garcia-Flores P et al (2012) Differential impairment of catecholaminergic cell maturation and survival by genetic mitochondrial complex II dysfunction. Mol Cell Biol 32:3347–3357PubMedCentralCrossRefPubMedGoogle Scholar
  85. 85.
    Piruat JI, Pintado CO, Ortega-Saenz P et al (2004) The mitochondrial SDHD gene is required for early embryogenesis, and its partial deficiency results in persistent carotid body glomus cell activation with full responsiveness to hypoxia. Mol Cell Biol 24:10,933–10,940CrossRefGoogle Scholar
  86. 86.
    Villadiego J, Mendez-Ferrer S, Valdes-Sanchez T et al (2005) Selective glial cell line-derived neurotrophic factor production in adult dopaminergic carotid body cells in situ and after intrastriatal transplantation. J Neurosci 25:4091–4098CrossRefPubMedGoogle Scholar
  87. 87.
    Pardal R, Lopez-Barneo J (2012) Neural stem cells and transplantation studies in Parkinson's disease. Adv Exp Med Biol 741:206–216CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Verónica Sobrino
    • 1
  • Valentina Annese
    • 1
  • Ricardo Pardal
    • 1
    Email author
  1. 1.Dpto. de Fisiología Médica y BiofísicaInstituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de SevillaSevillaSpain

Personalised recommendations