The Heterogeneity of Renal Stem Cells and Their Interaction with Bio- and Nano-materials

  • Fabio SallustioEmail author
  • Loreto Gesualdo
  • Dario Pisignano
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1123)


For a long time, the kidney has been considered incapable of regeneration. Instead, in recent years, studies have supported the existence of heterogeneity of renal stem/progenitor cells with the ability to regenerate both glomerular and tubular epithelial cells. Indeed, several studies evidence that renal progenitor cells, releasing chemokines, growth factors, microvesicles, and transcription factors through paracrine mechanisms, can induce tissue regeneration and block pathological processes of the kidney. In this chapter the potentiality of the kidney regenerative processes is considered and reviewed, and the main classes of stem/progenitor cells that might contribute to the renal tissue renewal is analyzed. Moreover, we evaluate the role of biomaterials in the regulation of cellular functions, specifically addressing renal stem/progenitor cells. Materials can be synthesized and tailored in order to recreate a finely structured microenvironment (by nanostructures, nanofibers, bioactive compounds, etc.) with which the cells can interact actively. For instance, by patterning substrates in regions that alternately promote or prevent protein adsorption, cell adhesion and spreading processes can be controlled in space. We illustrate the potentiality of nanotechnologies and engineered biomaterials in affecting and enhancing the behavior of renal stem/progenitor cells. Although there are still many challenges for the translation of novel therapeutics, advances in biomaterials and nanomedicine have the potential to drastically change the clinical and therapeutic landscape, even in combination with stem cell biology.


Renal stem cells Renal progenitor cells Glomerular cells Tubular cells Kidney regeneration Materials science Biomaterials Microvesicles Soft lithography Microcontact printing Polymer nanofibers Extracellular matrix 


  1. 1.
    Remuzzi G, Benigni A, Remuzzi A (2006) Mechanisms of progression and regression of renal lesions of chronic nephropathies and diabetes. J Clin Invest, 116:288-96. doi:
  2. 2.
    Wiggins R-C (2007) The spectrum of podocytopathies: a unifying view of glomerular diseases. Kidney Int 71:1205–1214CrossRefGoogle Scholar
  3. 3.
    Reimschuessel R (2001) A fish model of renal regeneration and development. ILAR J 42:285–291CrossRefGoogle Scholar
  4. 4.
    Elger M, Hentschel H, Litteral J, Wellner M, Kirsch T, Luft FC, Haller H (2003) Nephrogenesis is induced by partial nephrectomy in the elasmobranch Leucoraja erinacea. J Am Soc Nephrol 14:1506–1518CrossRefGoogle Scholar
  5. 5.
    Reimschuessel R, Bennett RO, May EB, Lipsky MM (1990) Development of newly formed nephrons in the goldfish kidney following hexachlorobutadiene-induced nephrotoxicity. Toxicol Pathol 18:32–38CrossRefGoogle Scholar
  6. 6.
    Lazzeri E, Angelotti ML, Peired A et al (2018) Endocycle-related tubular cell hypertrophy and progenitor proliferation recover renal function after acute kidney injury. Nat Commun 9:1344CrossRefGoogle Scholar
  7. 7.
    Rinkevich Y, Montoro DT, Contreras-Trujillo H et al (2014) In vivo clonal analysis reveals lineage-restricted progenitor characteristics in mammalian kidney development, maintenance, and regeneration. Cell Rep 7:1270–1283CrossRefGoogle Scholar
  8. 8.
    Schedl A (2007) Renal abnormalities and their developmental origin. Nat Rev Genet 8:791–802CrossRefGoogle Scholar
  9. 9.
    Dressler GR (2006) The cellular basis of kidney development. Annu Rev Cell Dev Biol 22:509–529CrossRefGoogle Scholar
  10. 10.
    Romagnani P, Lasagni L, Remuzzi G (2013) Renal progenitors: an evolutionary conserved strategy for kidney regeneration. Nat Rev Nephrol.
  11. 11.
    Kobayashi A, Valerius MT, Mugford JW, Carroll TJ, Self M, Oliver G, McMahon AP (2008) Six2 defines and regulates a multipotent self-renewing nephron progenitor population throughout mammalian kidney development. Cell Stem Cell 3:169–181CrossRefGoogle Scholar
  12. 12.
    Kubota H, Avarbock MR, Brinster RL (2003) Spermatogonial stem cells share some, but not all, phenotypic and functional characteristics with other stem cells. Proc Natl Acad Sci 100:6487–6492CrossRefGoogle Scholar
  13. 13.
    Shackleton M, Vaillant F, Simpson KJ, Stingl J, Smyth GK, Asselin-Labat M-L, Wu L, Lindeman GJ, Visvader JE (2006) Generation of a functional mammary gland from a single stem cell. Nature 439:84–88CrossRefGoogle Scholar
  14. 14.
    Kozakowski N, Soleiman A, Pammer J (2008) BMI-1 expression is inversely correlated with the grading of renal clear cell carcinoma. Pathol Oncol Res 14:9–13CrossRefGoogle Scholar
  15. 15.
    Rajasekhar VK, Begemann M (2007) Concise review: roles of polycomb group proteins in development and disease: a stem cell perspective. Stem Cells 25:2498–2510CrossRefGoogle Scholar
  16. 16.
    Pesce M, Schöler HR (2001) Oct-4: gatekeeper in the beginnings of mammalian development. Stem Cells 19:271–278CrossRefGoogle Scholar
  17. 17.
    Imgrund M, Gröne E, Gröne HJ, Kretzler M, Holzman L, Schlöndorff D, Rothenpieler UW (1999) Re-expression of the developmental gene Pax-2 during experimental acute tubular necrosis in mice. Kidney Int 56:1423–1431. CrossRefPubMedGoogle Scholar
  18. 18.
    Lazzeri E, Crescioli C, Ronconi E et al (2007) Regenerative potential of embryonic renal multipotent progenitors in acute renal failure. J Am Soc Nephrol 18:3128–3138CrossRefGoogle Scholar
  19. 19.
    Sallustio F, De Benedictis L, Castellano G, Zaza G, Loverre A, Costantino V, Grandaliano G, Schena FP (2010) TLR2 plays a role in the activation of human resident renal stem/progenitor cells. FASEB J 24:514–525. CrossRefPubMedGoogle Scholar
  20. 20.
    Bussolati B, Bruno S, Grange C, Buttiglieri S, Deregibus MC, Cantino D, Camussi G (2005) Isolation of renal progenitor cells from adult human kidney. Am J Pathol 166:545–555CrossRefGoogle Scholar
  21. 21.
    Baud L, Haymann JP, Bellocq A, Fouqueray B (2005) Contribution of stem cells to renal repair after ischemia/reperfusion. Bull Acad Natl Med 189:634–635Google Scholar
  22. 22.
    Brenner BM, Cooper ME, de Zeeuw D et al (2001) Effects of losartan on renal and cardiovascular outcomes in patients with Type 2 diabetes and nephropathy. N Engl J Med 345:861–869CrossRefGoogle Scholar
  23. 23.
    Adamczak M, Gross M-L, Krtil J, Koch A, Tyralla K, Amann K, Ritz E (2003) Reversal of glomerulosclerosis after high-dose enalapril treatment in subtotally nephrectomized rats. J Am Soc Nephrol 14:2833–2842CrossRefGoogle Scholar
  24. 24.
    Remuzzi A, Gagliardini E, Sangalli F, Bonomelli M, Piccinelli M, Benigni A, Remuzzi G (2006) ACE inhibition reduces glomerulosclerosis and regenerates glomerular tissue in a model of progressive renal disease. Kidney Int 69:1124–1130CrossRefGoogle Scholar
  25. 25.
    Gagliardini E, Corna D, Zoja C et al (2009) Unlike each drug alone, lisinopril if combined with avosentan promotes regression of renal lesions in experimental diabetes. Am J Physiol 297:F1448–F1456Google Scholar
  26. 26.
    Lewis EJ, Hunsicker LG, Bain RP, Rohde RD (1993) The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. N Engl J Med 329:1456–1462CrossRefGoogle Scholar
  27. 27.
    Fioretto P, Steffes MW, Sutherland DER, Goetz FC, Mauer M (1998) Reversal of lesions of diabetic nephropathy after pancreas transplantation. N Engl J Med 339:69–75CrossRefGoogle Scholar
  28. 28.
    HISHIKAWA K, FUJITA T (2006) Stem cells and kidney disease. Hypertens Res 29:745–749CrossRefGoogle Scholar
  29. 29.
    Hopkins C, Li J, Rae F, Little MH (2009) Stem cell options for kidney disease. J Pathol.
  30. 30.
    Oliver JA, Maarouf O, Cheema FH, Martens TP, Al-Awqati Q (2004) The renal papilla is a niche for adult kidney stem cells. J Clin Invest.
  31. 31.
    Little MH (2006) Regrow or repair: potential regenerative therapies for the kidney. J Am Soc Nephrol 17:2390–2401CrossRefGoogle Scholar
  32. 32.
    Sagrinati C, Netti GS, Mazzinghi B et al (2006) Isolation and characterization of multipotent progenitor cells from the Bowman’s capsule of adult human kidneys. J Am Soc Nephrol 17:2443–2456CrossRefGoogle Scholar
  33. 33.
    Loverre A, Capobianco C, Ditonno P, Battaglia M, Grandaliano G, Schena FP (2008) Increase of proliferating renal progenitor cells in acute tubular necrosis underlying delayed graft function. Transplantation 85:1112–1119CrossRefGoogle Scholar
  34. 34.
    Romagnani P (2009) Toward the identification of a “renopoietic system”? Stem Cells 27:2247–2253CrossRefGoogle Scholar
  35. 35.
    Ronconi E, Sagrinati C, Angelotti ML et al (2009) Regeneration of glomerular podocytes by human renal progenitors. J Am Soc Nephrol 20:322–332CrossRefGoogle Scholar
  36. 36.
    Sallustio F, Serino G, Schena FP (2015) Potential reparative role of resident adult renal stem/progenitor cells in acute kidney injury. Biores Open Access 4:326–333CrossRefGoogle Scholar
  37. 37.
    Sallustio F, Serino G, Costantino V, Curci C, Cox SN, De Palma G, Schena FP (2013) miR-1915 and miR-1225-5p regulate the expression of CD133, PAX2 and TLR2 in adult renal progenitor cells. PLoS One 10:e0128258. CrossRefGoogle Scholar
  38. 38.
    Procino G, Mastrofrancesco L, Sallustio F, Costantino V, Barbieri C, Pisani F, Schena FP, Svelto M, Valenti G (2011) AQP5 is expressed in type-B intercalated cells in the collecting duct system of the rat, mouse and human kidney. Cell Physiol Biochem 28:683–692. CrossRefPubMedGoogle Scholar
  39. 39.
    Benigni A, Morigi M, Rizzo P, Gagliardini E, Rota C, Abbate M, Ghezzi S, Remuzzi A, Remuzzi G (2011) Inhibiting angiotensin-converting enzyme promotes renal repair by limiting progenitor cell proliferation and restoring the glomerular architecture. Am J Pathol 179:628–638CrossRefGoogle Scholar
  40. 40.
    Angelotti ML, Ronconi E, Ballerini L et al (2012) Characterization of renal progenitors committed toward tubular lineage and their regenerative potential in renal tubular injury. Stem Cells 30:1714–1725CrossRefGoogle Scholar
  41. 41.
    Humphreys BD, Valerius MT, Kobayashi A, Mugford JW, Soeung S, Duffield JS, McMahon AP, Bonventre JV (2008) Intrinsic epithelial cells repair the kidney after injury. Cell Stem Cell 2:284–291CrossRefGoogle Scholar
  42. 42.
    Sallustio F, Curci C, Aloisi A et al (2017) Inhibin-A and decorin secreted by human adult renal stem/progenitor cells through the TLR2 engagement induce renal tubular cell regeneration. Sci Rep 7:8225. CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Castelletto L, Goya RG (1990) Sex-related incidence of tubular metaplasia in Bowman’s capsule of aging rats. Virchows Arch B Cell Pathol Incl Mol Pathol 59:79–82CrossRefGoogle Scholar
  44. 44.
    Andrews PM (1981) The presence of proximal tubulelike cells in the kidney parietal epithelium in response to unilateral nephrectomy. Anat Rec 200:61–65CrossRefGoogle Scholar
  45. 45.
    Langworthy M, Zhou B, de Caestecker M, Moeckel G, Baldwin HS (2009) NFATc1 identifies a population of proximal tubule cell progenitors. J Am Soc Nephrol 20:311–321CrossRefGoogle Scholar
  46. 46.
    Walker B, Mouton CP (2006) Nanotechnology and nanomedicine: a primer. J Natl Med Assoc 98:1985–1988PubMedPubMedCentralGoogle Scholar
  47. 47.
    Wagner V, Dullaart A, Bock AK, Zweck A (2006) The emerging nanomedicine landscape. Nat Biotechnol 24:1211–1217. CrossRefPubMedGoogle Scholar
  48. 48.
    Caruthers SD, Wickline SA, Lanza GM (2007) Nanotechnological applications in medicine. Curr Opin Biotechnol 18:26–30. CrossRefPubMedGoogle Scholar
  49. 49.
    Svenson S (2013) Theranostics: are we there yet? Mol Pharm 10:848–856CrossRefGoogle Scholar
  50. 50.
    Lee DY, Li KCP (2011) Molecular theranostics: a primer for the imaging professional. Am J Roentgenol 197:318–324. CrossRefGoogle Scholar
  51. 51.
    De Jong WH, Borm PJ a (2008) Drug delivery and nanoparticles: applications and hazards. Int J Nanomedicine, 3:133-149. doi:
  52. 52.
    Cho K, Wang X, Nie S, Chen ZG, Shin DM (2008) Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res 14:1310–1316. CrossRefPubMedGoogle Scholar
  53. 53.
    Huang Y, Fan C-Q, Dong H, Wang S-M, Yang X-C, Yang S-M (2017) Current applications and future prospects of nanomaterials in tumor therapy. Int J Nanomed 12:1815–1825CrossRefGoogle Scholar
  54. 54.
    Min Y, Caster JM, Eblan MJ, Wang AZ (2015) Clinical translation of nanomedicine. Chem Rev 115:11,147–11,190. CrossRefGoogle Scholar
  55. 55.
    Caster JM, Patel AN, Zhang T, Wang A (2017) Investigational nanomedicines in 2016: a review of nanotherapeutics currently undergoing clinical trials. Wiley Interdiscip Rev Nanomed Nanobiotechnol.
  56. 56.
    Li J, Mooney DJ (2016) Designing hydrogels for controlled drug delivery. Nat Rev Mater.
  57. 57.
    Peng E, Wang F, Xue JM (2015) Nanostructured magnetic nanocomposites as MRI contrast agents. J Mater Chem B 3:2241–2276. CrossRefGoogle Scholar
  58. 58.
    Wicki A, Witzigmann D, Balasubramanian V, Huwyler J (2015) Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications. J Control Release 200:138–157. CrossRefPubMedGoogle Scholar
  59. 59.
    Giancotti FG (1999) Integrin Signaling. Science. 285:1028–1032.
  60. 60.
    Hynes RO (2002) Integrins: bidirectional, allosteric signaling machines. Cell 110:673–687. CrossRefPubMedGoogle Scholar
  61. 61.
    Beningo KA, Dembo M, Wang Y -l. (2004) Responses of fibroblasts to anchorage of dorsal extracellular matrix receptors. Proc Natl Acad Sci 101:18,024–18,029. CrossRefGoogle Scholar
  62. 62.
    Ramakrishna S, Mayer J, Wintermantel E, Leong KW (2001) Biomedical applications of polymer-composite materials: a review. Compos Sci Technol 61:1189–1224. CrossRefGoogle Scholar
  63. 63.
    Daglar B, Ozgur E, Corman ME, Uzun L, Demirel GB (2014) Polymeric nanocarriers for expected nanomedicine: current challenges and future prospects. RSC Adv 4:48,639–48,659. CrossRefGoogle Scholar
  64. 64.
    de Las Heras Alarcon C, Pennadam S, Alexander C (2005) Stimuli responsive polymers for biomedical applications. Chem Soc Rev 34:276–285. CrossRefPubMedGoogle Scholar
  65. 65.
    Gentile P, Chiono V, Carmagnola I, Hatton PV (2014) An overview of poly(lactic-co-glycolic) Acid (PLGA)-based biomaterials for bone tissue engineering. Int J Mol Sci 15:3640–3659. CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Tibbitt MW, Rodell CB, Burdick JA, Anseth KS (2015) Progress in material design for biomedical applications. Proc Natl Acad Sci 112:14,444–14,451. CrossRefGoogle Scholar
  67. 67.
    Mahmoud Abbas AO (2010) Chitosan for biomedical applications. Univ Iowa.
  68. 68.
    Mano JF (2008) Stimuli-responsive polymeric systems for biomedical applications. Adv Eng Mater 10:515–527. CrossRefGoogle Scholar
  69. 69.
    Pařzek M, Novotná K, Bačáková L (2011) The role of smooth muscle cells in vessel wall pathophysiology and reconstruction using bioactive synthetic polymers. Physiol Res 60:419–437Google Scholar
  70. 70.
    Neyra MP. Interactions between titanium surfaces and biological components. PhD Thesis Dissertation 2009Google Scholar
  71. 71.
    Maheshwari G, Brown G, Lauffenburger DA, Wells A, Griffith LG (2000) Cell adhesion and motility depend on nanoscale RGD clustering. J Cell Sci 113:1677–1686. CrossRefGoogle Scholar
  72. 72.
    DeLong SA, Gobin AS, West JL (2005) Covalent immobilization of RGDS on hydrogel surfaces to direct cell alignment and migration. J Control Release 109:139–148. CrossRefPubMedGoogle Scholar
  73. 73.
    Sciancalepore AG, Portone A, Moffa M, Persano L, De Luca M, Paiano A, Sallustio F, Schena FP, Bucci C, Pisignano D (2016) Micropatterning control of tubular commitment in human adult renal stem cells. Biomaterials 94:57–69. CrossRefPubMedGoogle Scholar
  74. 74.
    Sciancalepore AG, Sallustio F, Girardo S, Passione LG, Camposeo A, Mele E, Lorenzo MD, Costantino V, Schena FP, Pisignano D (2014) A bioartificial renal tubule device embedding human renal stem/progenitor cells. PLoS One 10:e0128261. CrossRefGoogle Scholar
  75. 75.
    Khong TT, Aarstad OA, Skjåk-Bræk G, Draget KI, Vårum KM (2013) Gelling concept combining chitosan and alginate—proof of principle. Biomacromolecules 14:2765–2771CrossRefGoogle Scholar
  76. 76.
    Sciancalepore AG, Moffa M, Iandolo D, Netti GS, Prattichizzo C, Grandaliano G, Lucarelli G, Cormio L, Gesualdo L, Pisignano D Aligned nanofiber topographies enhance the differentiation of adult renal stem cells into glomerular podocytes. Adv Eng Mater 20:1800003Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Fabio Sallustio
    • 1
    • 2
    Email author
  • Loreto Gesualdo
    • 2
  • Dario Pisignano
    • 3
    • 4
  1. 1.Department of Basic Medical Sciences, Neuroscience and Sense OrgansUniversity of Bari “Aldo Moro”BariItaly
  2. 2.Department of Emergency and Organ TransplantationUniversity of Bari “Aldo Moro”BariItaly
  3. 3.Dipartimento di Fisica ‘E. Fermi’University of PisaPisaItaly
  4. 4.NEST CNR-Istituto Nanoscienze Piazza S. Silvestro 12PisaItaly

Personalised recommendations