Skip to main content

Cochlear Capillary Pericytes

  • Chapter
  • First Online:
Pericyte Biology in Different Organs

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1122))

Abstract

Capillary pericytes in the cochlea of mammals are—compared to pericytes in other tissues, like the CNS—relatively poorly researched. To begin with, there is still a considerable debate as to whether the very last precapillary arterioles should—due to their contractile properties—may be considered to be pericytes.

However, cochlear capillary pericytes have shifted into the center of attention in the past decade. Most mammals show a considerable number of pericytes in the stria vascularis of the cochlea—up to 1300 in a mouse alone. This high number may be explained by the observation that cochlear capillary pericytes may be differentiated into different subgroups, depending on the immune markers that are expressed by them. Corresponding with these subpopulations, cochlear pericytes fulfill three core functions in the physiology of the cochlea:

  • Formation of the intrastrial blood-fluid barrier—Pericytes monitor the ion, fluid, and nutrient household and aid in the homeostasis thereof.

  • Regulation of cochlear blood flow—By contraction on relaxation, pericytes contribute to the regulation of cochlear blood flow, a paramount function parameter of the cochlea.

  • Immune response—Pericytes actually contribute to the immune response in inflammation of the cochlea.

Due to these central roles in the physiology of the cochlea, pericytes actually play a major role in numerous cochlear pathologies, including, but not limited to, sudden sensorineural hearing loss, acoustic trauma, and inflammation of the cochlea.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arpornchayanon W, Canis M, Ihler F, Settevendemie C, Strieth S (2013) TNF-alpha inhibition using etanercept prevents noise-induced hearing loss by improvement of cochlear blood flow in vivo. Int J Audiol 52:545–552. https://doi.org/10.3109/14992027.2013.790564

    Article  PubMed  Google Scholar 

  • Attwell D, Mishra A, Hall CN, O’Farrell FM, Dalkara T (2016) What is a pericyte? J Cereb Blood Flow Metab 36:451–455

    Article  CAS  Google Scholar 

  • Bertlich M, Ihler F, Sharaf K, Weiss BG, Strupp M, Canis M (2014) Betahistine metabolites, Aminoethylpyridine, and Hydroxyethylpyridine increase cochlear blood flow in Guinea pigs in vivo. Int J Audiol 53:753–759. http://www.ncbi.nlm.nih.gov/pubmed/25014609

    Article  Google Scholar 

  • Bertlich M, Ihler F, Weiss BG, Freytag S, Strupp M, Canis M (2017a) Cochlear Pericytes are capable of reversibly decreasing capillary diameter in vivo after tumor necrosis factor exposure. Otol Neurotol 38:e545–e550

    Article  Google Scholar 

  • Bertlich M, Ihler F, Weiss BG, Freytag S, Jakob M, Strupp M et al (2017b) Fingolimod (FTY-720) is capable of reversing tumor necrosis factor induced decreases in Cochlear blood flow. Otol Neurotol 38:1213–1216

    Article  Google Scholar 

  • Bertlich M, Ihler F, Weiss BG, Freytag S, Strupp M, Jakob M et al (2017c) Role of capillary pericytes and precapillary arterioles in the vascular mechanism of betahistine in a Guinea pig inner ear model. Life Sci 187:17–21

    Article  CAS  Google Scholar 

  • Buckiova D, Ranjan S, Newman TA, Johnston AH, Sood R, Kinnunen PKJ et al (2012) Minimally invasive drug delivery to the cochlea through application of nanoparticles to the round window membrane. Nanomedicine (Lond) 7:1339–1354

    Article  CAS  Google Scholar 

  • Dai M, Nuttall A, Yang Y, Shi X (2009) Visualization and contractile activity of cochlear pericytes in the capillaries of the spiral ligament. Hear Res 254:100–107

    Article  Google Scholar 

  • Dore-Duffy P, Owen C, Balabanov R, Murphy S, Beaumont T, Rafols JA (2000) Pericyte migration from the vascular wall in response to traumatic brain injury. Microvasc Res 60:55–69

    Article  CAS  Google Scholar 

  • Fernandez-Klett F, Offenhauser N, Dirnagl U, Priller J, Lindauer U (2010) Pericytes in capillaries are contractile in vivo, but arterioles mediate functional hyperemia in the mouse brain. Proc Natl Acad Sci U S A 107:22290–22295

    Article  CAS  Google Scholar 

  • Hall CN, Reynell C, Gesslein B, Hamilton NB, Mishra A, Sutherland BA et al (2014) Capillary pericytes regulate cerebral blood flow in health and disease. Nature 508:55–60. https://doi.org/10.1038/nature13165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hill RA, Tong L, Yuan P, Murikinati S, Gupta S, Grutzendler J (2015) Regional blood flow in the Normal and ischemic brain is controlled by arteriolar smooth muscle cell contractility and not by capillary Pericytes. Neuron 87:95–110

    Article  CAS  Google Scholar 

  • Ihler F, Strieth S, Pieri N, Gohring P, Canis M (2012a) Acute hyperfibrinogenemia impairs cochlear blood flow and hearing function in Guinea pigs in vivo. Int J Audiol 51:210–215. https://doi.org/10.3109/14992027.2011.622302

    Article  PubMed  Google Scholar 

  • Ihler F, Bertlich M, Sharaf K, Strieth S, Strupp M, Canis M (2012b) Betahistine exerts a dose-dependent effect on cochlear stria vascularis blood flow in Guinea pigs in vivo. PLoS One 7:e39086

    Article  CAS  Google Scholar 

  • Ihler F, Sharaf K, Bertlich M, Strieth S, Reichel CA, Berghaus A et al (2013) Etanercept prevents decrease of cochlear blood flow dose-dependently caused by tumor necrosis factor alpha. Ann Otol Rhinol Laryngol 122:468–473

    Article  Google Scholar 

  • Ihler F, Pelz S, Coors M, Matthias C, Canis M (2014) Application of a TNF-alpha-inhibitor into the scala tympany after cochlear electrode insertion trauma in Guinea pigs: preliminary audiologic results. Int J Audiol 53:810–816. https://doi.org/10.3109/14992027.2014.938369

    Article  PubMed  Google Scholar 

  • Ishihara H, Kariya S, Okano M, Zhao P, Maeda Y, Nishizaki K (2016) Expression of macrophage migration inhibitory factor and CD74 in the inner ear and middle ear in lipopolysaccharide-induced otitis media. Acta Otolaryngol 136:1011–1016

    Article  CAS  Google Scholar 

  • Jeong H-J, Kim S-J, Moon P-D, Kim N-H, Kim J-S, Park R-K et al (2007) Antiapoptotic mechanism of cannabinoid receptor 2 agonist on cisplatin-induced apoptosis in the HEI-OC1 auditory cell line. J Neurosci Res 85:896–905

    Article  CAS  Google Scholar 

  • Juhn SK, Hunter BA, Odland RM (2001) Blood-labyrinth barrier and fluid dynamics of the inner ear. Int Tinnitus J 7:72–83

    CAS  PubMed  Google Scholar 

  • Lamm K, Arnold W (2000) The effect of blood flow promoting drugs on cochlear blood flow, perilymphatic pO(2) and auditory function in the normal and noise-damaged hypoxic and ischemic Guinea pig inner ear. Hear Res 141:199–219

    Article  CAS  Google Scholar 

  • Mujica-Mota MA, Lehnert S, Devic S, Gasbarrino K, Daniel SJ (2014) Mechanisms of radiation-induced sensorineural hearing loss and radioprotection. Hear Res 312:60–68

    Article  CAS  Google Scholar 

  • Nakashima T, Naganawa S, Sone M, Tominaga M, Hayashi H, Yamamoto H et al (2003) Disorders of cochlear blood flow. Brain Res Brain Res Rev 43:17–28

    Article  Google Scholar 

  • Neng L, Zhang J, Yang J, Zhang F, Lopez IA, Dong M et al (2015) Structural changes in thestrial blood-labyrinth barrier of aged C57BL/6 mice. Cell Tissue Res 361:685–696

    Article  CAS  Google Scholar 

  • Peppiatt CM, Howarth C, Mobbs P, Attwell D (2006) Bidirectional control of CNS capillary diameter by pericytes. Nature 443:700–704

    Article  CAS  Google Scholar 

  • Pfister F, Feng Y, vom Hagen F, Hoffmann S, Molema G, Hillebrands J-L et al (2008) Pericyte migration: a novel mechanism of pericyte loss in experimental diabetic retinopathy. Diabetes 57:2495–2502

    Article  CAS  Google Scholar 

  • Roland PS, Wright CG (2006) Surgical aspects of cochlear implantation: mechanisms of insertional trauma. Adv Otorhinolaryngol 64:11–30

    PubMed  Google Scholar 

  • Sharaf K, Ihler F, Bertlich M, Reichel CA, Berghaus A, Canis M (2016) Tumor necrosis factor-induced decrease of Cochlear blood flow can be reversed by Etanercept or JTE-013. Otol Neurotol 37:e203–e208

    Article  Google Scholar 

  • Sheth S, Mukherjea D, Rybak LP, Ramkumar V (2017) Mechanisms of Cisplatin-induced ototoxicity and Otoprotection. Front Cell Neurosci 11:338

    Article  Google Scholar 

  • Shi X (2009) Cochlear pericyte responses to acoustic trauma and the involvement of hypoxia-inducible factor-1alpha and vascular endothelial growth factor. Am J Pathol 174:1692–1704

    Article  CAS  Google Scholar 

  • Shi X (2011) Physiopathology of the cochlear microcirculation. Hear Res 282:10–24

    Article  Google Scholar 

  • Shi X (2016) Pathophysiology of the cochlear intrastrial fluid-blood barrier (review). Hear Res 338:52–63

    Article  CAS  Google Scholar 

  • Shi X, Han W, Yamamoto H, Tang W, Lin X, Xiu R et al (2008) The cochlear pericytes. Microcirculation 15:515–529

    Article  CAS  Google Scholar 

  • Suckfull M (2002) Fibrinogen and LDL apheresis in treatment of sudden hearing loss: a randomised multicentre trial. Lancet (London, England) 360:1811–1817

    Article  CAS  Google Scholar 

  • Wang JT, Wang AY, Psarros C, Da Cruz M (2014) Rates of revision and device failure in cochlear implant surgery: a 30-year experience. Laryngoscope 124:2393–2399

    Article  Google Scholar 

  • Weiss BG, Bertlich M, Bettag SA, Desinger H, Ihler F, Canis M (2017) Drug-induced Defibrinogenation as new treatment approach of acute hearing loss in an animal model for inner ear vascular impairment. Otol Neurotol 38:648–654

    Article  Google Scholar 

  • Zhang F, Zhang J, Neng L, Shi X (2013) Characterization and inflammatory response of perivascular-resident macrophage-like melanocytes in the vestibular system. J Assoc Res Otolaryngol 14:635–643

    Article  Google Scholar 

  • Zhang J, Chen S, Hou Z, Cai J, Dong M, Shi X (2015) Lipopolysaccharide-induced middle ear inflammation disrupts the cochlear intra-strial fluid-blood barrier through down-regulation of tight junction proteins. PLoS One 10:e0122572

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mattis Bertlich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Canis, M., Bertlich, M. (2019). Cochlear Capillary Pericytes. In: Birbrair, A. (eds) Pericyte Biology in Different Organs. Advances in Experimental Medicine and Biology, vol 1122. Springer, Cham. https://doi.org/10.1007/978-3-030-11093-2_7

Download citation

Publish with us

Policies and ethics