Pericytes in the Umbilical Cord

  • Andrée Gauthier-FisherEmail author
  • Peter Szaraz
  • Clifford L. Librach
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1122)


The structural components of the umbilical cord, including two arteries and one vein, the stromal region/Wharton’s jelly, and amniotic epithelial membrane, are well described at various time points of gestation. Over the last two decades, evidence has emerged that multipotent cells sharing properties of mesenchymal stromal cell and pericytes/mural cells can be isolated from multiple regions of the umbilical cord, including the perivascular region of the umbilical cord arteries and vein, Wharton’s jelly, and subamnion. These cells have increasingly gained interest for their potential use in regenerative and immunomodulatory medicine. Recent studies suggest that obstetrical complications including gestational diabetes mellitus and preeclampsia may alter the yield, properties, and potency of mesenchymal stromal cells isolated from the umbilical cord. The role that pericytes or pericyte-like cells play in the development of the human umbilical cord and associated pathologies, however, remains to be investigated.


Human umbilical cord Perivascular cells Fetal development Gestation Body stalk Umbilical artery Umbilical vein Wharton’s jelly Placenta Obstetrical complication Vasculature Preeclampsia Mesenchymal stromal cells Regenerative medicine 



The authors would like to thank Farwah Iqbal (Librach lab) for providing unpublished data included in Fig. 12.5 and Denis Gallagher (CReATe Fertility Centre) for his careful review and edits of the manuscript. The authors would like to acknowledge the authors of previously published books and scientific articles for contributions to figures. Some images found in Figs. 12.2, 12.3, and 12.6 were obtained with permission as described in figure legends.


  1. An B, Kim E, Song H, Ha KS, Han ET, Park WS, Ahn TG, Yang SR, Na S, Hong SH (2017) Gestational diabetes affects the growth and functions of perivascular stem cells. Mol Cells 40(6):434–439PubMedPubMedCentralCrossRefGoogle Scholar
  2. Andreeva ER, Pugach IM, Gordon D, Orekhov AN (1998) Continuous subendothelial network formed by pericyte-like cells in human vascular bed. Tissue Cell 30(1):127–135PubMedCrossRefGoogle Scholar
  3. Baksh D, Yao R, Tuan RS (2007) Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow. Stem Cells 25(6):1384–1392PubMedCrossRefGoogle Scholar
  4. Bankowski E, Sobolewski K, Romanowicz L, Chyczewski L, Jaworski S (1996) Collagen and glycosaminoglycans of Wharton's jelly and their alterations in EPH-gestosis. Eur J Obstet Gynecol Reprod Biol 66(2):109–117PubMedCrossRefGoogle Scholar
  5. Bankowski E, Sobolewski K, Palka J, Jaworski S (2004) Decreased expression of the insulin-like growth factor-I-binding protein-1 (IGFBP-1) phosphoisoform in pre-eclamptic Wharton's jelly and its role in the regulation of collagen biosynthesis. Clin Chem Lab Med 42(2):175–181PubMedCrossRefGoogle Scholar
  6. Benirschke K, Kaufmann P (1995) Pathology of the human placenta. Springer, New YorkCrossRefGoogle Scholar
  7. Blanco MV, Vega HR, Giuliano R, Grana DR, Azzato F, Lerman J, Milei J (2011) Histomorphometry of umbilical cord blood vessels in preeclampsia. J Clin Hypertens (Greenwich) 13(1):30–34CrossRefGoogle Scholar
  8. Caplan AI (2008) All MSCs are pericytes? Cell Stem Cell 3(3):229−230Google Scholar
  9. Can A, Karahuseyinoglu S (2007) Concise review: human umbilical cord stroma with regard to the source of fetus-derived stem cells. Stem Cells 25(11):2886–2895PubMedCrossRefGoogle Scholar
  10. Can A, Celikkan FT, Cinar O (2017) Umbilical cord mesenchymal stromal cell transplantations: a systemic analysis of clinical trials. Cytotherapy 19(12):1351–1382PubMedCrossRefGoogle Scholar
  11. Clarke JA (1965) An x-ray microscopic study of the human umbilical arteries. Z Zellforsch Mikrosk Anat 66(2):293–299PubMedCrossRefGoogle Scholar
  12. Cole J, Israfil-Bayli F (2016) Wharton's jelly: the significance of absence. J Obstet Gynaecol 36(4):500–501PubMedCrossRefGoogle Scholar
  13. Corrao S, La Rocca G, Lo Iacono M, Corsello T, Farina F, Anzalone R (2013) Umbilical cord revisited: from Wharton's jelly myofibroblasts to mesenchymal stem cells. Histol Histopathol 28(10):1235–1244PubMedGoogle Scholar
  14. Corselli M, Chen CW, Sun B, Yap S, Rubin JP, Peault B (2012) The tunica adventitia of human arteries and veins as a source of mesenchymal stem cells. Stem Cells Dev 21(8):1299–1308PubMedCrossRefGoogle Scholar
  15. Coskun H, Can A (2015) The assessment of the in vivo to in vitro cellular transition of human umbilical cord multipotent stromal cells. Placenta 36(2):232–239PubMedCrossRefGoogle Scholar
  16. Covas DT, Panepucci RA, Fontes AM, Silva WA Jr, Orellana MD, Freitas MC, Neder L, Santos AR, Peres LC, Jamur MC, Zago MA (2008) Multipotent mesenchymal stromal cells obtained from diverse human tissues share functional properties and gene-expression profile with CD146+ perivascular cells and fibroblasts. Exp Hematol 36(5):642–654PubMedCrossRefGoogle Scholar
  17. Crisan M, Yap S, Casteilla L, Chen CW, Corselli M, Park TS, Andriolo G, Sun B, Zheng B, Zhang L, Norotte C, Teng PN, Traas J, Schugar R, Deasy BM, Badylak S, Buhring HJ, Giacobino JP, Lazzari L, Huard J, Peault B (2008) A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3(3):301–313PubMedCrossRefGoogle Scholar
  18. Cullen, T. S. (1916). Embryology, anatomy, and diseases of the umbilicus, together with the diseases of the urachus. Philadelphia SaundersCrossRefGoogle Scholar
  19. Davies JE, Walker JT, Keating A (2017) Concise review: Wharton's jelly: the rich, but enigmatic, source of mesenchymal stromal cells. Stem Cells Transl Med 6(7):1620–1630PubMedPubMedCentralCrossRefGoogle Scholar
  20. Diaz-Flores L, Gutierrez R, Madrid JF, Varela H, Valladares F, Acosta E, Martin-Vasallo P, Diaz-Flores L Jr (2009) Pericytes. Morphofunction, interactions and pathology in a quiescent and activated mesenchymal cell niche. Histol Histopathol 24(7):909–969PubMedGoogle Scholar
  21. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8(4):315–317PubMedCrossRefGoogle Scholar
  22. Downs KM (1998) The murine allantois. Curr Top Dev Biol 39:1–33PubMedCrossRefGoogle Scholar
  23. Downs KM, Gifford S, Blahnik M, Gardner RL (1998) Vascularization in the murine allantois occurs by vasculogenesis without accompanying erythropoiesis. Development 125(22):4507–4520PubMedGoogle Scholar
  24. Ellison JP (1971) The nerves of the umbilical cord in man and the rat. Am J Anat 132(1):53–60PubMedCrossRefGoogle Scholar
  25. Friedenstein AJ, Chailakhjan RK, Lalykina KS (1970) The development of fibroblast colonies in monolayer cultures of Guinea-pig bone marrow and spleen cells. Cell Tissue Kinet 3(4):393–403PubMedGoogle Scholar
  26. Friedman R, Betancur M, Boissel L, Tuncer H, Cetrulo C, Klingemann H (2007) Umbilical cord mesenchymal stem cells: adjuvants for human cell transplantation. Biol Blood Marrow Transplant 13(12):1477–1486PubMedCrossRefGoogle Scholar
  27. Guadix JA, Zugaza JL, Galvez-Martin P (2017) Characteristics, applications and prospects of mesenchymal stem cells in cell therapy. Med Clin (Barc) 148(9):408–414CrossRefGoogle Scholar
  28. Holm A et al (2018) Microvascular mural cell Organotypic heterogeneity and functional plasticity. Trends Cell Biol 28(4):302–316PubMedCrossRefGoogle Scholar
  29. Hong SH, Maghen L, Kenigsberg S, Teichert AM, Rammeloo AW, Shlush E, Szaraz P, Pereira S, Lulat A, Xiao R, Yie SM, Gauthier-Fisher A, Librach CL (2013) Ontogeny of human umbilical cord perivascular cells: molecular and fate potential changes during gestation. Stem Cells Dev 22(17):2425–2439PubMedCrossRefGoogle Scholar
  30. Hoyes AD (1969) Ultrastructure of the epithelium of the human umbilical cord. J Anat 105(Pt 1):149–162PubMedPubMedCentralGoogle Scholar
  31. Inman KE, Downs KM (2007) The murine allantois: emerging paradigms in development of the mammalian umbilical cord and its relation to the fetus. Genesis 45(5):237–258PubMedCrossRefGoogle Scholar
  32. Iqbal F, Szaraz P, Librach M, Gauthier-Fisher A, Librach CL (2017) Angiogenic potency evaluation of cell therapy candidates by a novel application of the in vitro aortic ring assay. Stem Cell Res Ther 8(1):184PubMedPubMedCentralCrossRefGoogle Scholar
  33. Ishige I, Nagamura-Inoue T, Honda MJ, Harnprasopwat R, Kido M, Sugimoto M, Nakauchi H, Tojo A (2009) Comparison of mesenchymal stem cells derived from arterial, venous, and Wharton’s jelly explants of human umbilical cord. Int J Hematol 90(2):261–269PubMedCrossRefGoogle Scholar
  34. Joerger-Messerli M, Bruhlmann E, Bessire A, Wagner A, Mueller M, Surbek DV, Schoeberlein A (2015) Preeclampsia enhances neuroglial marker expression in umbilical cord Wharton’s jelly-derived mesenchymal stem cells. J Matern Fetal Neonatal Med 28(4):464–469PubMedCrossRefGoogle Scholar
  35. Junek T, Baum O, Lauter H, Vetter K, Matejevic D, Graf R (2000) Pre-eclampsia associated alterations of the elastic fibre system in umbilical cord vessels. Anat Embryol (Berl) 201(4):291–303CrossRefGoogle Scholar
  36. Jurewicz E, Kasacka I, Bankowski E, Filipek A (2014) S100A6 and its extracellular targets in Wharton's jelly of healthy and preeclamptic patients. Placenta 35(6):386–391PubMedCrossRefGoogle Scholar
  37. Karahuseyinoglu S, Cinar O, Kilic E, Kara F, Akay GG, Demiralp DO, Tukun A, Uckan D, Can A (2007) Biology of stem cells in human umbilical cord stroma: in situ and in vitro surveys. Stem Cells 25(2):319–331PubMedCrossRefGoogle Scholar
  38. Khati NJ, Enquist EG, Javitt MC (1998) Imaging of the umbilicus and periumbilical region. Radiographics 18(2):413–431PubMedCrossRefGoogle Scholar
  39. Kim J, Piao Y, Pak YK, Chung D, Han YM, Hong JS, Jun EJ, Shim JY, Choi J, Kim CJ (2015) Umbilical cord mesenchymal stromal cells affected by gestational diabetes mellitus display premature aging and mitochondrial dysfunction. Stem Cells Dev 24(5):575–586PubMedCrossRefGoogle Scholar
  40. Kulkarni ML, Matadh PS, Ashok C, Pradeep N, Avinash T, Kulkarni AM (2007) Absence of Wharton’s jelly around the umbilical arteries. Indian J Pediatr 74(8):787–789PubMedCrossRefGoogle Scholar
  41. Lim J, Razi ZR, Law J, Nawi AM, Idrus RB, Ng MH (2016) MSCs can be differentially isolated from maternal, middle and fetal segments of the human umbilical cord. Cytotherapy 18(12):1493–1502PubMedCrossRefGoogle Scholar
  42. Loibl M, Binder A, Herrmann M, Duttenhoefer F, Richards RG, Nerlich M, Alini M, Verrier S (2014) Direct cell-cell contact between mesenchymal stem cells and endothelial progenitor cells induces a pericyte-like phenotype in vitro. Biomed Res Int 2014:395781PubMedPubMedCentralCrossRefGoogle Scholar
  43. Malas MA, Sulak O, Gokcimen A, Sari A (2003) Morphology of umbilical vessels in human fetuses: a quantitative light microscopy study. Eur J Morphol 41(5):167–174PubMedGoogle Scholar
  44. Manea A, Manea SA, Todirita A, Albulescu IC, Raicu M, Sasson S, Simionescu M (2015) High-glucose-increased expression and activation of NADPH oxidase in human vascular smooth muscle cells is mediated by 4-hydroxynonenal-activated PPARalpha and PPARbeta/delta. Cell Tissue Res 361(2):593–604PubMedCrossRefGoogle Scholar
  45. McElreavey KD, Irvine AI, Ennis KT, McLean WH (1991) Isolation, culture and characterisation of fibroblast-like cells derived from the Wharton’s jelly portion of human umbilical cord. Biochem Soc Trans 19(1):29SPubMedCrossRefGoogle Scholar
  46. Meirelles Lda S, Fontes AM, Covas DT, Caplan AI (2009) Mechanisms involved in the therapeutic properties of mesenchymal stem cells. Cytokine Growth Factor Rev 20(5–6):419–427PubMedCrossRefGoogle Scholar
  47. Montemurro T, Andriolo G, Montelatici E, Weissmann G, Crisan M, Colnaghi MR, Rebulla P, Mosca F, Peault B, Lazzari L (2011) Differentiation and migration properties of human foetal umbilical cord perivascular cells: potential for lung repair. J Cell Mol Med 15(4):796–808PubMedCrossRefGoogle Scholar
  48. Nanaev AK, Kohnen G, Milovanov AP, Domogatsky SP, Kaufmann P (1997) Stromal differentiation and architecture of the human umbilical cord. Placenta 18(1):53–64PubMedCrossRefGoogle Scholar
  49. Parry EW (1970) Some electron microscope observations on the mesenchymal structures of full-term umbilical cord. J Anat 107(Pt 3):505–518PubMedPubMedCentralGoogle Scholar
  50. Parry EW, Abramovich DR (1970) Some observations on the surface layer of full-term human umbilical cord epithelium. J Obstet Gynaecol Br Commonw 77(10):878–884PubMedCrossRefGoogle Scholar
  51. Parry EW, Abramovich DR (1972) The ultrastructure of human umbilical vessel endothelium from early pregnancy to full term. J Anat 111(Pt 1):29–42PubMedPubMedCentralGoogle Scholar
  52. Pearson AA, Sauter RW (1970) Nerve contributions to the pelvic plexus and the umbilical cord. Am J Anat 128(4):485–498PubMedCrossRefGoogle Scholar
  53. Ryu YJ, Seol HS, Cho TJ, Kwon TJ, Jang SJ, Cho J (2013) Comparison of the ultrastructural and immunophenotypic characteristics of human umbilical cord-derived mesenchymal stromal cells and in situ cells in Wharton's jelly. Ultrastruct Pathol 37(3):196–203PubMedCrossRefGoogle Scholar
  54. Samsonraj RM, Raghunath M, Nurcombe V, Hui JH, van Wijnen AJ, Cool SM (2017) Concise review: multifaceted characterization of human mesenchymal stem cells for use in regenerative medicine. Stem Cells Transl Med 6(12):2173–2185PubMedPubMedCentralCrossRefGoogle Scholar
  55. Sarugaser R, Lickorish D, Baksh D, Hosseini MM, Davies JE (2005) Human umbilical cord perivascular (HUCPV) cells: a source of mesenchymal progenitors. Stem Cells 23(2):220–229PubMedCrossRefGoogle Scholar
  56. Sarugaser R, Ennis J, Stanford WL, Davies JE (2009) Isolation, propagation, and characterization of human umbilical cord perivascular cells (HUCPVCs). Methods Mol Biol 482:269–279PubMedCrossRefGoogle Scholar
  57. Schugar RC, Chirieleison SM, Wescoe KE, Schmidt BT, Askew Y, Nance JJ, Evron JM, Peault B, Deasy BM (2009) High harvest yield, high expansion, and phenotype stability of CD146 mesenchymal stromal cells from whole primitive human umbilical cord tissue. J Biomed Biotechnol 2009:789526PubMedPubMedCentralCrossRefGoogle Scholar
  58. Seano G, Chiaverina G, Gagliardi PA, di Blasio L, Sessa R, Bussolino F, Primo L (2013) Modeling human tumor angiogenesis in a three-dimensional culture system. Blood 121(21):e129–e137PubMedPubMedCentralCrossRefGoogle Scholar
  59. Sexton AJ, Turmaine M, Cai WQ, Burnstock G (1996) A study of the ultrastructure of developing human umbilical vessels. J Anat 188(Pt 1):75–85PubMedPubMedCentralGoogle Scholar
  60. Sheppard BL, Bishop AJ (1973) Electron microscopical observations on sheep umbilical vessels. Q J Exp Physiol Cogn Med Sci 58(1):39–45PubMedGoogle Scholar
  61. Shende P, Gupta H, Gaud RS (2018) Cytotherapy using stromal cells: current and advance multi-treatment approaches. Biomed Pharmacother 97:38–44PubMedCrossRefGoogle Scholar
  62. Shlush E, Maghen L, Swanson S, Kenigsberg S, Moskovtsev S, Barretto T, Gauthier-Fisher A, Librach CL (2017) In vitro generation of Sertoli-like and haploid spermatid-like cells from human umbilical cord perivascular cells. Stem Cell Res Ther 8(1):37PubMedPubMedCentralCrossRefGoogle Scholar
  63. Sims DE (2000) Diversity within pericytes. Clin Exp Pharmacol Physiol 27(10):842–846PubMedCrossRefGoogle Scholar
  64. Singh N, Rao S, Sobti P, Khurana N (2012) Multiple vessels in the umbilical cord: a report of four cases. Indian J Pathol Microbiol 55(4):597–598PubMedCrossRefGoogle Scholar
  65. Spurway J, Logan P, Pak S (2012) The development, structure and blood flow within the umbilical cord with particular reference to the venous system. Australas J Ultrasound Med 15(3):97–102PubMedPubMedCentralCrossRefGoogle Scholar
  66. Stehbens WE, Wakefield JS, Gilbert-Barness E, Zuccollo JM (2005) Histopathology and ultrastructure of human umbilical blood vessels. Fetal Pediatr Pathol 24(6):297–315PubMedCrossRefGoogle Scholar
  67. Subramanian A, Fong CY, Biswas A, Bongso A (2015) Comparative characterization of cells from the various compartments of the human umbilical cord shows that the Wharton's jelly compartment provides the best source of clinically utilizable mesenchymal stem cells. PLoS One 10(6):e0127992PubMedPubMedCentralCrossRefGoogle Scholar
  68. Szaraz P, Librach M, Maghen L, Iqbal F, Barretto TA, Kenigsberg S, Gauthier-Fisher A, Librach CL (2016) In vitro differentiation of first trimester human umbilical cord perivascular cells into contracting cardiomyocyte-like cells. Stem Cells Int 2016:7513252PubMedPubMedCentralCrossRefGoogle Scholar
  69. Takechi K, Kuwabara Y, Mizuno M (1993) Ultrastructural and immunohistochemical studies of Wharton's jelly umbilical cord cells. Placenta 14(2):235–245PubMedCrossRefGoogle Scholar
  70. Wajid N, Naseem R, Anwar SS, Awan SJ, Ali M, Javed S, Ali F (2015) The effect of gestational diabetes on proliferation capacity and viability of human umbilical cord-derived stromal cells. Cell Tissue Bank 16(3):389–397PubMedCrossRefGoogle Scholar
  71. Wetzig A, Alaiya A, Al-Alwan M, Pradez CB, Pulicat MS, Al-Mazrou A, Shinwari Z, Sleiman GM, Ghebeh H, Al-Humaidan H, Gaafar A, Kanaan I, Adra C (2013) Differential marker expression by cultures rich in mesenchymal stem cells. BMC Cell Biol 14:54PubMedPubMedCentralCrossRefGoogle Scholar
  72. Yang HT, Chao KC (2013) Foetal defence against cancer: a hypothesis. J Cell Mol Med 17(9):1096–1098PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Andrée Gauthier-Fisher
    • 1
    Email author
  • Peter Szaraz
    • 1
  • Clifford L. Librach
    • 1
    • 2
    • 3
    • 4
    • 5
  1. 1.CReATe Fertility CentreUniversity of TorontoTorontoCanada
  2. 2.Department of Obstetrics and GynecologyUniversity of TorontoTorontoCanada
  3. 3.Department of PhysiologyUniversity of TorontoTorontoCanada
  4. 4.Institute of Medical Sciences, University of TorontoTorontoCanada
  5. 5.Department of Obstetrics and GynecologyWomen’s College HospitalTorontoCanada

Personalised recommendations