Skip to main content

Pattern Formation

  • Chapter
  • First Online:
Distributed Computing by Mobile Entities

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11340))

Abstract

The Pattern Formation problem is one of the most important coordination problem for robotic systems. Initially the entities are in arbitrary positions; within finite time they must arrange themselves in the space so to form a pattern given in input. In this chapter, we will mainly deal with the problem in the \(\mathcal{OBLOT}\) model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that, since at this time the robots still do not have a common agreement on the direction of the X axis, for some robots \({\mathcal M} _\mathbb D \) and \({\mathcal L} _\mathbb D \) might be different. All of them, however, agree on \(K _m\).

  2. 2.

    Note that, since \(\mathbb P _R\) is symmetric, nothing changes if the topmost point on the leftmost vertical axis tangent to \(\mathbb P\) is mapped onto \({ Out} \), and the topmost point on the rightmost vertical axis tangent to \(\mathbb P\) is mapped onto \({ Out}' \).

  3. 3.

    Equivalently, the position of the landmarks is known a priori to all robots.

  4. 4.

    For a plane graph, the periphery is the boundary of the exterior face.

References

  1. Ando, H., Suzuki, I., Yamashita, M.: Formation and agreement problems for synchronous mobile robots with limited visibility. In: Proceedings of the 1995 IEEE Symposium on Intelligent Control, pp. 453–460 (1995)

    Google Scholar 

  2. Chatzigiannakis, I., Markou, M., Nikoletseas, S.: Distributed circle formation for anonymous oblivious robots. In: Ribeiro, C.C., Martins, S.L. (eds.) WEA 2004. LNCS, vol. 3059, pp. 159–174. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24838-5_12

    Chapter  Google Scholar 

  3. Défago, X., Konagaya, A.: Circle formation for oblivious anonymous mobile robots with no common sense of orientation. In: Proceedings of 2nd Workshop on Principles of Mobile Computing, pp. 97–104 (2002)

    Google Scholar 

  4. Défago, X., Souissi, S.: Non-uniform circle formation algorithm for oblivious mobile robots with convergence toward uniformity. Theor. Comput. Sci. 396(1–3), 97–112 (2008)

    Article  MathSciNet  Google Scholar 

  5. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Arbitrary pattern formation by asynchronous oblivious robots. Theor. Comput. Sci. 407(1–3), 412–447 (2008)

    Article  MathSciNet  Google Scholar 

  6. Kasuya, M., Ito, N., Inuzuka, N., Wada, K.: A pattern formation algorithm for a set of autonomous distributed robots with agreement on orientation along one axis. Syst. Comput. Jpn. 37(10), 89–100 (2006)

    Article  Google Scholar 

  7. Katreniak, B.: Biangular circle formation by asynchronous mobile robots. In: Pelc, A., Raynal, M. (eds.) SIROCCO 2005. LNCS, vol. 3499, pp. 185–199. Springer, Heidelberg (2005). https://doi.org/10.1007/11429647_16

    Chapter  Google Scholar 

  8. Sugihara, K., Suzuki, I.: Distributed algorithms for formation of geometric patterns with many mobile robots. J. Robot. Syst. 13, 127–139 (1996)

    Article  Google Scholar 

  9. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: formation of geometric patterns. SIAM J. Comput. 28(4), 1347–1363 (1999)

    Article  MathSciNet  Google Scholar 

  10. Tanaka, O.: Forming a circle by distributed anonymous mobile robots. Master’s thesis, Department of Electrical Engineering (1992)

    Google Scholar 

  11. Wang, P.K.C.: Navigation strategies for multiple autonomous mobile robots moving in formation. J. Robot. Syst. 8(2), 177–195 (1991)

    Article  Google Scholar 

  12. Yamauchi, Y., Uehara, T., Kijima, S., Yamashita, M.: Plane formation by synchronous mobile robots in the three-dimensional euclidean space. J. ACM 64(3), 16:1–16:43 (2017)

    Article  MathSciNet  Google Scholar 

  13. Dieudonné, Y., Petit, F., Villain, V.: Leader election problem versus pattern formation problem. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp. 267–281. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15763-9_26

    Chapter  Google Scholar 

  14. Fujinaga, N., Ono, H., Kijima, S., Yamashita, M.: Pattern formation through optimum matching by oblivious CORDA robots. In: Lu, C., Masuzawa, T., Mosbah, M. (eds.) OPODIS 2010. LNCS, vol. 6490, pp. 1–15. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17653-1_1

    Chapter  Google Scholar 

  15. Yamashita, M., Suzuki, I.: Characterizing geometric patterns formable by oblivious anonymous mobile robots. Theor. Comput. Sci. 411(26–28), 2433–2453 (2010)

    Article  MathSciNet  Google Scholar 

  16. Fujinaga, N.: Oblivious pattern formation algorithms for asynchronous mobile robots based on bipartite matching approach. Master’s thesis, Department of Informatics, Kyushu University (2012)

    Google Scholar 

  17. Das, S., Flocchini, P., Santoro, N., Yamashita, M.: On the computational power of oblivious robots: forming a series of geometric patterns. In: Proceedings of 29th Annual ACM Symposium on Principles of Distributed Computing (PODC), pp. 267–276 (2010)

    Google Scholar 

  18. Bouzid, Z., Lamani, A.: Robot networks with homonyms: the case of patterns formation. In: Défago, X., Petit, F., Villain, V. (eds.) SSS 2011. LNCS, vol. 6976, pp. 92–107. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24550-3_9

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Prencipe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Prencipe, G. (2019). Pattern Formation. In: Flocchini, P., Prencipe, G., Santoro, N. (eds) Distributed Computing by Mobile Entities. Lecture Notes in Computer Science(), vol 11340. Springer, Cham. https://doi.org/10.1007/978-3-030-11072-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11072-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11071-0

  • Online ISBN: 978-3-030-11072-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics