Skip to main content

Patrolling

  • Chapter
  • First Online:
Distributed Computing by Mobile Entities

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11340))

Abstract

Patrolling is concerned with the design of continuous trajectories which specify robots perpetual movements along a curve so that the time between any two consecutive visits to any point of the curve is minimized. In this paper we survey recent rigorous results on patrolling by various number of robots and robots’ specifications (e.g., speed), and for various types of curves. We discuss efficient patrolling strategies for mobile agents with various capabilities and behaviors acting on a variety of geometric graph domains.

Research supported in part by NSERC Discovery grants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agmon, N., Kraus, S., Kaminka, G.A.: Multi-robot perimeter patrol in adversarial settings. In: ICRA, pp. 2339–2345 (2008)

    Google Scholar 

  2. Almeida, A., et al.: Recent advances on multi-agent patrolling. In: Bazzan, A.L.C., Labidi, S. (eds.) SBIA 2004. LNCS, vol. 3171, pp. 474–483. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28645-5_48

    Chapter  Google Scholar 

  3. Bampas, E., Gąsieniec, L., Hanusse, N., Ilcinkas, D., Klasing, R., Kosowski, A.: Euler tour lock-in problem in the rotor-router model. In: Keidar, I. (ed.) DISC 2009. LNCS, vol. 5805, pp. 423–435. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04355-0_44

    Chapter  Google Scholar 

  4. Chalopin, J., Das, S., Gawrychowski, P., Kosowski, A., Labourel, A., Uznański, P.: Lock-in problem for parallel rotor-router walks. arXiv preprint arXiv:1407.3200 (2014)

  5. Chalopin, J., Das, S., Gawrychowski, P., Kosowski, A., Labourel, A., Uznański, P.: Limit behavior of the multi-agent rotor-router system. In: Moses, Y. (ed.) DISC 2015. LNCS, vol. 9363, pp. 123–139. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48653-5_9

    Chapter  Google Scholar 

  6. Chevaleyre, Y.: Theoretical analysis of the multi-agent patrolling problem. In: IAT, pp. 302–308 (2004)

    Google Scholar 

  7. Chuangpishit, H., Czyzowicz, J., Gasieniec, L., Georgiou, K., Jurdzinski, T., Kranakis, E.: Patrolling a path connecting a set of points with unbalanced frequencies of visits. CoRR, abs/1710.00466 (2017)

    Google Scholar 

  8. Collins, A., et al.: Optimal patrolling of fragmented boundaries. In: 25th ACM Symposium on Parallelism in Algorithms and Architectures, SPAA 2013, Montreal, QC, Canada, 23–25 July 2013, pp. 241–250 (2013)

    Google Scholar 

  9. Czyzowicz, J., Gąsieniec, L., Kosowski, A., Kranakis, E.: Boundary patrolling by mobile agents with distinct maximal speeds. In: Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011. LNCS, vol. 6942, pp. 701–712. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23719-5_59

    Chapter  Google Scholar 

  10. Czyzowicz, J., Gasieniec, L., Kosowski, A., Kranakis, E., Krizanc, D., Taleb, N.: When patrolmen become corrupted: monitoring a graph using faulty mobile robots. Algorithmica 79(3), 925–940 (2017)

    Article  MathSciNet  Google Scholar 

  11. Czyzowicz, J., Georgiou, K., Kranakis, E., MacQuarrie, F., Pajak, D.: Fence patrolling with two-speed robots. In: Proceedings of 5th the International Conference on Operations Research and Enterprise Systems, ICORES 2016, Rome, Italy, 23–25 February 2016, pp. 229–241 (2016)

    Google Scholar 

  12. Czyzowicz, J., Kosowski, A., Kranakis, E., Taleb, N.: Patrolling trees with mobile robots. In: Cuppens, F., Wang, L., Cuppens-Boulahia, N., Tawbi, N., Garcia-Alfaro, J. (eds.) FPS 2016. LNCS, vol. 10128, pp. 331–344. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-51966-1_22

    Chapter  Google Scholar 

  13. Czyzowicz, J., Kranakis, E., Pajak, D., Taleb, N.: Patrolling by robots equipped with visibility. In: Halldórsson, M.M. (ed.) SIROCCO 2014. LNCS, vol. 8576, pp. 224–234. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09620-9_18

    Chapter  Google Scholar 

  14. Dumitrescu, A., Ghosh, A., Tóth, C.D.: On fence patrolling by mobile agents. Electr. J. Comb. 21(3), P3.4 (2014)

    MathSciNet  MATH  Google Scholar 

  15. Elmaliach, Y., Agmon, N., Kaminka, G.A.: Multi-robot area patrol under frequency constraints. Ann. Math. Artif. Intell. 57(3–4), 293–320 (2009)

    Article  MathSciNet  Google Scholar 

  16. Elmaliach, Y., Shiloni, A., Kaminka, G.A.: A realistic model of frequency-based multi-robot polyline patrolling. In: AAMAS, no. 1, pp. 63–70 (2008)

    Google Scholar 

  17. Hazon, N., Kaminka, G.A.: On redundancy, efficiency, and robustness in coverage for multiple robots. Robot. Auton. Syst. 56(12), 1102–1114 (2008)

    Article  Google Scholar 

  18. Kawamura, A., Kobayashi, Y.: Fence patrolling by mobile agents with distinct speeds. Distrib. Comput. 28(2), 147–154 (2015)

    Article  MathSciNet  Google Scholar 

  19. Kranakis, E., Krizanc, D.: Optimization problems in infrastructure security. In: Garcia-Alfaro, J., Kranakis, E., Bonfante, G. (eds.) FPS 2015. LNCS, vol. 9482, pp. 3–13. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30303-1_1

    Chapter  Google Scholar 

  20. Machado, A., Ramalho, G., Zucker, J.-D., Drogoul, A.: Multi-agent patrolling: an empirical analysis of alternative architectures. In: Simão Sichman, J., Bousquet, F., Davidsson, P. (eds.) MABS 2002. LNCS, vol. 2581, pp. 155–170. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36483-8_11

    Chapter  MATH  Google Scholar 

  21. Pasqualetti, F., Franchi, A., Bullo, F.: On optimal cooperative patrolling. In: CDC, pp. 7153–7158 (2010)

    Google Scholar 

  22. Yanovski, V., Wagner, I.A., Bruckstein, A.M.: A distributed ant algorithm for efficiently patrolling a network. Algorithmica 37(3), 165–186 (2003)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to express our deepest appreciation to our colleagues Huda Chuangpishit, Leszek Gasieniec, Tomasz Jurdzinsk, Adrian Kosowski, Danny Krizanc, Fraser MacQuarrie, Russell Martin, Dominik Pajak, Oscar Morales Ponce, Lata Narayanan, Jarda Opatrny, and Najmeh Taleb for numerous interesting conversations that excited our interests on all aspects of patrolling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evangelos Kranakis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Czyzowicz, J., Georgiou, K., Kranakis, E. (2019). Patrolling. In: Flocchini, P., Prencipe, G., Santoro, N. (eds) Distributed Computing by Mobile Entities. Lecture Notes in Computer Science(), vol 11340. Springer, Cham. https://doi.org/10.1007/978-3-030-11072-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11072-7_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11071-0

  • Online ISBN: 978-3-030-11072-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics