Skip to main content

Spiral Wave Chimera

  • Chapter
  • First Online:
Book cover Synchronization and Waves in Active Media

Part of the book series: Springer Theses ((Springer Theses))

Abstract

A spiral wave chimera is the union of spiral waves [1] and chimeras states [2] - two paradigms in spatial pattern formation and temporal synchronization [3]. Spiral waves have been researched extensively in simulations as well as experiments during the last 70 years [4] in excitable media due to their spontaneous formation in a plethora of natural systems (see the introduction of Chap. 2 for examples). A spiral wave nucleates from the open end of an excitation wave. The open end curls in and becomes the center of the spiral wave from which waves are periodically emitted. The chimera state was numerically found by Yoshiki Kuramoto about 15 years ago (In 2001 Kuramoto presented his findings on nonlocally coupled systems, that already encompassed one- and two-dimensional problems, at a meeting named “Nonlinear Dynamics and Chaos: Where do we go from here?” in Bristol, United Kingdom. Subsequently his work, on what later became known as chimera state [5], was published as a chapter [6] in the accompanying conference monograph [7].), when he extended his model for synchronization in networks from globally to nonlocally coupled oscillators. While dissipative oscillators with identical frequencies in a globally coupled system trivially synchronize, this is not the case for nonlocal coupling. Two groups emerge: One coherent group, which is frequency-synchronized and another incoherent one, which is desynchronized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In 2001 Kuramoto presented his findings on nonlocally coupled systems, that already encompassed one- and two-dimensional problems, at a meeting named “Nonlinear Dynamics and Chaos: Where do we go from here?” in Bristol, United Kingdom. Subsequently his work, on what later became known as chimera state [5], was published as a chapter [6] in the accompanying conference monograph [7].

  2. 2.

    Since the pattern is discontinuous, the phase singularity is not localized at a single point, as for regular spiral waves with a continuous concentration field. Instead the singularity is spread out over the entire core region.

References

  1. A.T. Winfree, The Geometry of Biological Time (Springer, Berlin, 2001). https://doi.org/10.1007/978-1-4757-3484-3

    Book  MATH  Google Scholar 

  2. M.J. Panaggio, D.M. Abrams, Chimera states: coexistence of coherence and incoherence in networks of coupled oscillators. Nonlinearity 28, R67 (2015). https://doi.org/10.1088/0951-7715/28/3/R67

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. P. Ashwin, S. Coombes, R. Nicks, Mathematical frameworks for oscillatory network dynamics in neuroscience. J. Math. Neurosci. 6, 1 (2016). https://doi.org/10.1186/s13408-015-0033-6

  4. N. Wiener, A. Rosenblueth, The mathematical formulation of the problem of conduction of impulses in a network of connected excitable elements, specifically in cardiac muscle. Arch. Inst. Cardiol. Mex. 16, 205 (1946), https://www.ncbi.nlm.nih.gov/pubmed/20245817

  5. D.M. Abrams, S.H. Strogatz, Chimera states for coupled oscillators. Phys. Rev. Lett. 93, 174102 (2004). https://doi.org/10.1103/PhysRevLett.93.174102

  6. Y. Kuramoto, Reduction methods applied to non-locally coupled oscillator systems, in Nonlinear Dynamics and Chaos: Where Do We Go from Here? (CRC Press, Boca Raton, 2002), pp. 209–227. https://doi.org/10.1201/9781420033830.ch9

    Google Scholar 

  7. J. Hogan, A.R. Krauskopf, M. di Bernado, R.E. Wilson, H.M. Osinga, M.E. Homer, A.R. Champneys (eds.), Nonlinear Dynamics and Chaos: Where Do We Go from Here (CRC Press, Boca Raton, 2002), https://www.crcpress.com/Nonlinear-Dynamics-and-Chaos-Where-do-we-go-from-here/Hogan-Krauskopf-Bernado-Wilson-Osinga-Homer-Champneys/p/book/9780750308625

  8. E. Alvarez-Lacalle, B. Echebarria, Global coupling in excitable media provides a simplified description of mechanoelectrical feedback in cardiac tissue. Phys. Rev. E 79, 031921 (2009). https://doi.org/10.1103/PhysRevE.79.031921

  9. J.C. González-Avella, M.G. Cosenza, M. San Miguel, Localized coherence in two interacting populations of social agents. Phys. A 399, 24 (2014). https://doi.org/10.1016/j.physa.2013.12.035

    Article  ADS  Google Scholar 

  10. I.A. Shepelev, T.E. Vadivasova, A.V. Bukh, G.I. Strelkova, V.S. Anishchenko, New type of chimera structures in a ring of bistable FitzHugh–Nagumo oscillators with nonlocal interaction. Phys. Lett. A 381, 1398 (2017). https://doi.org/10.1016/j.physleta.2017.02.034

    Article  ADS  MathSciNet  Google Scholar 

  11. M. Zhang, G.S. Wiederhecker, S. Manipatruni, A. Barnard, P. McEuen, M. Lipson, Synchronization of micromechanical oscillators using light. Phys. Rev. Lett. 109, 233906 (2012). https://doi.org/10.1103/PhysRevLett.109.233906

  12. M. Zhang, S. Shah, J. Cardenas, M. Lipson, Synchronization and phase noise reduction in micromechanical oscillator arrays coupled through light. Phys. Rev. Lett. 115, 163902 (2015). https://doi.org/10.1103/PhysRevLett.115.163902

  13. E. Gil-Santos, M. Labousse, C. Baker, A. Goetschy, W. Hease, C. Gomez, A. Lemaître, G. Leo, C. Ciuti, I. Favero, Light-mediated cascaded locking of multiple nano-optomechanical oscillators. Phys. Rev. Lett. 118, 063605 (2017). https://doi.org/10.1103/PhysRevLett.118.063605

  14. M. Rohden, A. Sorge, M. Timme, D. Witthaut, Self-organized synchronization in decentralized power grids. Phys. Rev. Lett. 109, 064101 (2012). https://doi.org/10.1103/PhysRevLett.109.064101

  15. M. Trepanier, D. Zhang, O. Mukhanov, S.M. Anlage, Realization and modeling of metamaterials made of rf superconducting quantum-interference devices. Phys. Rev. X 3, 041029 (2013). https://doi.org/10.1103/PhysRevX.3.041029

  16. N. Lazarides, G. Neofotistos, G.P. Tsironis, Chimeras in SQUID metamaterials. Phys. Rev. B 91, 054303 (2015). https://doi.org/10.1103/PhysRevB.91.054303

  17. V. In, A. Palacios, Superconductive quantum interference devices (SQUID), in Symmetry in Complex Network Systems (Springer, Berlin, 2018), pp. 127–163. https://doi.org/10.1007/978-3-662-55545-3_4

    Google Scholar 

  18. S. Kaka, M.R. Pufall, W.H. Rippard, T.J. Silva, S.E. Russek, J.A. Katine, Mutual phase-locking of microwave spin torque nano-oscillators. Nature 437, 389 (2005). https://doi.org/10.1038/nature04035

    Article  ADS  Google Scholar 

  19. M. Zaks, A. Pikovsky, Chimeras and complex cluster states in arrays of spin-torque oscillators. Sci. Rep. 7, 4648 (2017). https://doi.org/10.1038/s41598-017-04918-9

  20. H.W. Lau, J. Davidsen, C. Simon, Chimera patterns in conservative systems and ultracold atoms with mediated nonlocal hopping (2017), arXiv:1708.04375

  21. C.R. Laing, C.C. Chow, Stationary bumps in networks of spiking neurons. Neural Comput. 13, 1473 (2001), http://www.mitpressjournals.org/doi/abs/10.1162/089976601750264974

    Article  MATH  Google Scholar 

  22. C.R. Laing, Derivation of a neural field model from a network of theta neurons. Phys. Rev. E 90, 010901 (2014). https://doi.org/10.1103/PhysRevE.90.010901

  23. P.C. Bressloff, Z.P. Kilpatrick, Nonlocal Ginzburg-Landau equation for cortical pattern formation. Phys. Rev. E 78, 041916 (2008). https://doi.org/10.1103/PhysRevE.78.041916

  24. J. Viventi et al., Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo. Nat. Neurosci. 14, 1599 (2011). https://doi.org/10.1038/nn.2973

    Article  Google Scholar 

  25. R.G. Andrzejak, C. Rummel, F. Mormann, K. Schindler, All together now: analogies between chimera state collapses and epileptic seizures. Sci. Rep. 6, 23000 (2016). https://doi.org/10.1038/srep23000

  26. N. Uchida, R. Golestanian, Synchronization and collective dynamics in a carpet of microfluidic rotors. Phys. Rev. Lett. 104, 178103 (2010). https://doi.org/10.1103/PhysRevLett.104.178103

  27. R. Faubel, C. Westendorf, E. Bodenschatz, G. Eichele, Cilia-based flow network in the brain ventricles. Science 353, 176 (2016). https://doi.org/10.1126/science.aae0450

    Article  ADS  Google Scholar 

  28. M.R. Tinsley, S. Nkomo, K. Showalter, Chimera and phase-cluster states in populations of coupled chemical oscillators. Nat. Phys. 8, 662 (2012). https://doi.org/10.1038/nphys2371

    Article  ADS  Google Scholar 

  29. S. Nkomo, M.R. Tinsley, K. Showalter, Chimera states in populations of nonlocally coupled chemical oscillators. Phys. Rev. Lett. 110, 244102 (2013). https://doi.org/10.1103/PhysRevLett.110.244102

  30. M. Wickramasinghe, I.Z. Kiss, Spatially organized partial synchronization through the chimera mechanism in a network of electrochemical reactions. Phys. Chem. Chem. Phys. 16, 18360 (2014). https://doi.org/10.1039/C4CP02249A

    Article  Google Scholar 

  31. K. Schönleber, C. Zensen, A. Heinrich, K. Krischer, Pattern formation during the oscillatory photoelectrodissolution of n-type silicon: turbulence, clusters and chimeras. New J. Phys. 16, 063024 (2014). https://doi.org/10.1088/1367-2630/16/6/063024

    Article  ADS  Google Scholar 

  32. L. Schmidt, K. Schönleber, K. Krischer, V. García-Morales, Coexistence of synchrony and incoherence in oscillatory media under nonlinear global coupling. Chaos 24, 013102 (2014). https://doi.org/10.1063/1.4858996

    Article  MathSciNet  Google Scholar 

  33. M. Patzauer, R. Hueck, A. Tosolini, K. Schönleber, K. Krischer, Autonomous oscillations and pattern formation with zero external resistance during silicon electrodissolution. Electrochim. Acta 246, 315 (2017). https://doi.org/10.1016/j.electacta.2017.06.005

    Article  Google Scholar 

  34. P. Kumar, D.K. Verma, P. Parmananda, Partially synchronized states in an ensemble of chemo-mechanical oscillators. Phys. Lett. A 381, 2337 (2017). https://doi.org/10.1016/j.physleta.2017.05.032

    Article  ADS  Google Scholar 

  35. A.M. Hagerstrom, T.E. Murphy, R. Roy, P. Hövel, I. Omelchenko, E. Schöll, Experimental observation of chimeras in coupled-map lattices. Nat. Phys. 8, 658 (2012). https://doi.org/10.1038/nphys2372

    Article  ADS  Google Scholar 

  36. J.D. Hart, K. Bansal, T.E. Murphy, R. Roy, Experimental observation of chimera and cluster states in a minimal globally coupled network. Chaos 26, 094801 (2016). https://doi.org/10.1063/1.4953662

    Article  MathSciNet  Google Scholar 

  37. E.A. Martens, S. Thutupalli, A. Fourrière, O. Hallatschek, Chimera states in mechanical oscillator networks. Proc. Natl. Acad. Sci. USA 110, 10563 (2013). https://doi.org/10.1073/pnas.1302880110

    Article  ADS  Google Scholar 

  38. T. Kapitaniak, P. Kuzma, J. Wojewoda, K. Czolczynski, Y. Maistrenko, Imperfect chimera states for coupled pendula. Sci. Rep. 4, 6379 (2014). https://doi.org/10.1038/srep06379

  39. J. Wojewoda, K. Czolczynski, Y. Maistrenko, T. Kapitaniak, The smallest chimera state for coupled pendula. Sci. Rep. 6, 34329 (2016). https://doi.org/10.1038/srep34329

  40. L. Larger, B. Penkovsky, Y. Maistrenko, Virtual chimera states for delayed-feedback systems. Phys. Rev. Lett. 111, 054103 (2013). https://doi.org/10.1103/PhysRevLett.111.054103

  41. L. Larger, B. Penkovsky, Y. Maistrenko, Laser chimeras as a paradigm for multistable patterns in complex systems. Nat. Commun. 6, 7752 (2015). https://doi.org/10.1038/ncomms8752

  42. F. Rossi, S. Ristori, N. Marchettini, O.L. Pantani, Functionalized clay microparticles as catalysts for chemical oscillators. J. Phys. Chem. C 118, 24389 (2014). https://doi.org/10.1021/jp5032724

    Article  Google Scholar 

  43. L.V. Gambuzza, A. Buscarino, S. Chessari, L. Fortuna, R. Meucci, M. Frasca, Experimental investigation of chimera states with quiescent and synchronous domains in coupled electronic oscillators. Phys. Rev. E 90, 032905 (2014). https://doi.org/10.1103/PhysRevE.90.032905

  44. L.Q. English, A. Zampetaki, P.G. Kevrekidis, K. Skowronski, C.B. Fritz, S. Abdoulkary, Analysis and observation of moving domain fronts in a ring of coupled electronic self-oscillators. Chaos 27, 103125 (2017). https://doi.org/10.1063/1.5009088

    Article  MathSciNet  MATH  Google Scholar 

  45. D.R. Brumley, N. Bruot, J. Kotar, R.E. Goldstein, P. Cicuta, M. Polin, Long-range interactions, wobbles, and phase defects in chains of model cilia. Phys. Rev. Fluids 1, 081201 (2016). https://doi.org/10.1103/PhysRevFluids.1.081201

  46. V.K. Vanag, L. Yang, M. Dolnik, A.M. Zhabotinsky, I.R. Epstein, Oscillatory cluster patterns in a homogeneous chemical system with global feedback. Nature 406, 389 (2000). https://doi.org/10.1038/35019038

    Article  ADS  Google Scholar 

  47. P. Rupp, R. Richter, I. Rehberg, Critical exponents of directed percolation measured in spatiotemporal intermittency. Phys. Rev. E 67, 036209 (2003). https://doi.org/10.1103/PhysRevE.67.036209

  48. L. Hall-Stoodley, J.W. Costerton, P. Stoodley, Bacterial biofilms: from the natural environment to infectious diseases. Nat. Rev. Microbiol. 2, 95 (2004). https://doi.org/10.1038/nrmicro821

    Article  Google Scholar 

  49. S. Bayin, Mathematical Methods in Science and Engineering (Wiley, New York, 2006), http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470041420.html

  50. Y. Kuramoto, S. Shima, Rotating spirals without phase singularity in reaction-diffusion systems. Prog. Theor. Phys. Suppl. 150, 115 (2003). https://doi.org/10.1143/PTPS.150.115

    Article  ADS  MathSciNet  Google Scholar 

  51. S. Shima, Y. Kuramoto, Rotating spiral waves with phase-randomized core in nonlocally coupled oscillators. Phys. Rev. E 69, 036213 (2004). https://doi.org/10.1103/PhysRevE.69.036213

  52. V. Casagrande, Synchronization, waves, and turbulence in systems of interacting chemical oscillators. Ph.D. thesis, TU Berlin, FHI (2006), https://depositonce.tu-berlin.de/handle/11303/1642

  53. M. Hazewinkel, Diffeomorphism, in Encyclopedia of Mathematics (Springer, Berlin, 2001), https://www.encyclopediaofmath.org/index.php/Diffeomorphism

  54. Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence (Springer, Berlin, 1984). https://doi.org/10.1007/978-3-642-69689-3

    Book  MATH  Google Scholar 

  55. A. Pikovsky, M. Rosenblum, J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences (Cambridge University Press, Cambridge, 2001), http://www.cambridge.org/de/academic/subjects/physics/nonlinear-science-and-fluid-dynamics/synchronization-universal-concept-nonlinear-sciences?format=PB&isbn=9780521533522

  56. D.M. Abrams, R. Mirollo, S.H. Strogatz, D.A. Wiley, Solvable model for chimera states of coupled oscillators. Phys. Rev. Lett. 101, 084103 (2008). https://doi.org/10.1103/PhysRevLett.101.084103

  57. Y. Kuramoto, D. Battogtokh, Coexistence of coherence and incoherence in nonlocally coupled phase oscillators. Nonlinear Phenom. Complex Syst. 5, 380 (2002), http://www.j-npcs.org/abstracts/vol2002/v5no4/v5no4p380.html

  58. D.M. Abrams, S.H. Strogatz, Chimera states in a ring of nonlocally coupled oscillators. Int. J. Bifurc. Chaos 16, 21 (2006). https://doi.org/10.1142/S0218127406014551

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. O.E. Omel’chenko, Y.L. Maistrenko, P.A. Tass, Chimera states: the natural link between coherence and incoherence. Phys. Rev. Lett. 100, 044105 (2008). https://doi.org/10.1103/PhysRevLett.100.044105

  60. O.E. Omel’chenko, M. Wolfrum, Y.L. Maistrenko, Chimera states as chaotic spatiotemporal patterns. Phys. Rev. E 81, 065201 (2010). https://doi.org/10.1103/PhysRevE.81.065201

  61. I. Omelchenko, O.E. Omel’chenko, P. Hövel, E. Schöll, When nonlocal coupling between oscillators becomes stronger: patched synchrony or multichimera states. Phys. Rev. Lett. 110, 224101 (2013). https://doi.org/10.1103/PhysRevLett.110.224101

  62. R.G. Andrzejak, G. Ruzzene, I. Malvestio, Generalized synchronization between chimera states. Chaos 27, 053114 (2017). https://doi.org/10.1063/1.4983841

    Article  MathSciNet  MATH  Google Scholar 

  63. O.E. Omel’chenko, M. Wolfrum, S. Yanchuk, Y.L. Maistrenko, O. Sudakov, Stationary patterns of coherence and incoherence in two-dimensional arrays of non-locally-coupled phase oscillators. Phys. Rev. E85, 036210 (2012). https://doi.org/10.1103/PhysRevE.85.036210

  64. X. Tang, T. Yang, I.R. Epstein, Y. Liu, Y. Zhao, Q. Gao, Novel type of chimera spiral waves arising from decoupling of a diffusible component. J. Chem. Phys. 141, 024110 (2014). https://doi.org/10.1063/1.4886395

    Article  ADS  Google Scholar 

  65. B.-W. Li, H. Dierckx, Spiral wave chimeras in locally coupled oscillator systems. Phys. Rev. E 93, 020202 (2016). https://doi.org/10.1103/PhysRevE.93.020202

  66. B.P. Abbott et al., Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 061102 (2016). https://doi.org/10.1103/PhysRevLett.116.061102

  67. A. Schmidt, T. Kasimatis, J. Hizanidis, A. Provata, P. Hövel, Chimera patterns in two-dimensional networks of coupled neurons. Phys. Rev. E 95, 032224 (2017). https://doi.org/10.1103/PhysRevE.95.032224

  68. M. Falcke, H. Engel, Influence of global coupling through the gas phase on the dynamics of CO oxidation on Pt(110). Phys. Rev. E 50, 1353 (1994). https://doi.org/10.1103/PhysRevE.50.1353

    Article  ADS  Google Scholar 

  69. Y. Maistrenko, O. Sudakov, O. Osiv, V. Maistrenko, Chimera states in three dimensions. New J. Phys. 17, 073037 (2015). https://doi.org/10.1088/1367-2630/17/7/073037

    Article  ADS  Google Scholar 

  70. H.W. Lau, J. Davidsen, Linked and knotted chimera filaments in oscillatory systems. Phys. Rev. E 94, 010204 (2016). https://doi.org/10.1103/PhysRevE.94.010204

  71. V. Maistrenko, O. Sudakov, O. Osiv, Y. Maistrenko, Multiple scroll wave chimera states. Eur. Phys. J. Spec. Top. 226, 1867 (2017). https://doi.org/10.1140/epjst/e2017-70007-1

    Article  ADS  Google Scholar 

  72. M. Shanahan, Metastable chimera states in community-structured oscillator networks. Chaos 20, 013108 (2010). https://doi.org/10.1063/1.3305451

    Article  MathSciNet  Google Scholar 

  73. Y. Zhu, Z. Zheng, J. Yang, Chimera states on complex networks. Phys. Rev. E 89, 022914 (2014). https://doi.org/10.1103/PhysRevE.89.022914

  74. P. Ashwin, O. Burylko, Weak chimeras in minimal networks of coupled phase oscillators. Chaos 25, 013106 (2015). https://doi.org/10.1063/1.4905197

    Article  MathSciNet  MATH  Google Scholar 

  75. X. Jiang, D.M. Abrams, Symmetry-broken states on networks of coupled oscillators. Phys. Rev. E 93, 052202 (2016). https://doi.org/10.1103/PhysRevE.93.052202

  76. G. Ghoshal, A.P. Muñuzuri, J. Pérez-Mercader, Emergence of a super-synchronized mobbing state in a large population of coupled chemical oscillators. Sci. Rep. 6, 19186 (2016). https://doi.org/10.1038/srep19186

  77. J. Shena, J. Hizanidis, V. Kovanis, G.P. Tsironis, Turbulent chimeras in large semiconductor laser arrays. Sci. Rep. 7, 42116 (2017). https://doi.org/10.1038/srep42116

  78. A. Zakharova, M. Kapeller, E. Schöll, Chimera death: symmetry breaking in dynamical networks. Phys. Rev. Lett. 112, 154101 (2014). https://doi.org/10.1103/PhysRevLett.112.154101

  79. A. Vüllings, J. Hizanidis, I. Omelchenko, P. Hövel, Clustered chimera states in systems of type-I excitability. New J. Phys. 16, 123039 (2014). https://doi.org/10.1088/1367-2630/16/12/123039

    Article  ADS  Google Scholar 

  80. I. Omelchenko, Y. Maistrenko, P. Hövel, E. Schöll, Loss of coherence in dynamical networks: spatial chaos and chimera states. Phys. Rev. Lett. 106, 234102 (2011). https://doi.org/10.1103/PhysRevLett.106.234102

  81. C. Gu, G. St-Yves, J. Davidsen, Spiral wave chimeras in complex oscillatory and chaotic systems. Phys. Rev. Lett. 111, 134101 (2013). https://doi.org/10.1103/PhysRevLett.111.134101

  82. G.C. Sethia, A. Sen, F.M. Atay, Clustered chimera states in delay-coupled oscillator systems. Phys. Rev. Lett. 100, 144102 (2008). https://doi.org/10.1103/PhysRevLett.100.144102

  83. F. Böhm, A. Zakharova, E. Schöll, K. Lüdge, Amplitude-phase coupling drives chimera states in globally coupled laser networks. Phys. Rev. E 91, 040901 (2015). https://doi.org/10.1103/PhysRevE.91.040901

  84. A. Zakharova, S.A.M. Loos, J. Siebert, A. Gjurchinovski, J.C. Claussen, E. Schöll, Controlling chimera patterns in networks: interplay of structure, noise, and delay, in Control of Self-organizing Nonlinear Systems (Springer, Berlin, 2016), pp. 3–23. https://doi.org/10.1007/978-3-319-28028-8_1

    Google Scholar 

  85. S.A.M. Loos, J.C. Claussen, E. Schöll, A. Zakharova, Chimera patterns under the impact of noise. Phys. Rev. E 93, 012209 (2016). https://doi.org/10.1103/PhysRevE.93.012209

  86. V. Semenov, A. Zakharova, Y. Maistrenko, E. Schöll, Delayed-feedback chimera states: forced multiclusters and stochastic resonance. Europhys. Lett. 115, 10005 (2016). https://doi.org/10.1209/0295-5075/115/10005

    Article  ADS  Google Scholar 

  87. N. Semenova, A. Zakharova, V. Anishchenko, E. Schöll, Coherence-resonance chimeras in a network of excitable elements. Phys. Rev. Lett. 117, 014102 (2016). https://doi.org/10.1103/PhysRevLett.117.014102

  88. A. Buscarino, M. Frasca, L.V. Gambuzza, P. Hövel, Chimera states in time-varying complex networks. Phys. Rev. E 91, 022817 (2015). https://doi.org/10.1103/PhysRevE.91.022817

  89. J. Sieber, O.E. Omel’chenko, M. Wolfrum, Controlling unstable chaos: stabilizing chimera states by feedback. Phys. Rev. Lett. 112, 054102 (2014). https://doi.org/10.1103/PhysRevLett.112.054102

  90. C. Bick, E.A. Martens, Controlling chimeras. New J. Phys. 17, 033030 (2015). https://doi.org/10.1088/1367-2630/17/3/033030

    Article  ADS  MathSciNet  Google Scholar 

  91. I. Omelchenko, O.E. Omel’chenko, A. Zakharova, M. Wolfrum, E. Schöll, Tweezers for chimeras in small networks. Phys. Rev. Lett. 116, 114101 (2016). https://doi.org/10.1103/PhysRevLett.116.114101

  92. T. Isele, J. Hizanidis, A. Provata, P. Hövel, Controlling chimera states: the influence of excitable units. Phys. Rev. E 93, 022217 (2016). https://doi.org/10.1103/PhysRevE.93.022217

  93. F.P. Kemeth, S.W. Haugland, L. Schmidt, I.G. Kevrekidis, K. Krischer, A classification scheme for chimera states. Chaos 26, 094815 (2016). https://doi.org/10.1063/1.4959804

    Article  Google Scholar 

  94. C.R. Laing, The dynamics of chimera states in heterogeneous Kuramoto networks. Phys. D 238, 1569 (2009). https://doi.org/10.1016/j.physd.2009.04.012

    Article  ADS  MathSciNet  MATH  Google Scholar 

  95. C. Laing, Chimeras in two-dimensional domains: heterogeneity and the continuum limit. SIAM J. Appl. Dyn. Syst. 16, 974 (2017). https://doi.org/10.1137/16M1086662

    Article  MathSciNet  MATH  Google Scholar 

  96. E. Ott, T.M. Antonsen, Low dimensional behavior of large systems of globally coupled oscillators. Chaos 18, 037113 (2008). https://doi.org/10.1063/1.2930766

    Article  MathSciNet  MATH  Google Scholar 

  97. D. Cohen, J. Neu, R. Rosales, Rotating spiral wave solutions of reaction-diffusion equations. SIAM J. Appl. Math. 35, 536 (1978). https://doi.org/10.1137/0135045

    Article  MathSciNet  MATH  Google Scholar 

  98. E.A. Martens, C.R. Laing, S.H. Strogatz, Solvable model of spiral wave chimeras. Phys. Rev. Lett. 104, 044101 (2010). https://doi.org/10.1103/PhysRevLett.104.044101

  99. J.F. Totz, R. Snari, D. Yengi, M.R. Tinsley, H. Engel, K. Showalter, Phase-lag synchronization in networks of coupled chemical oscillators. Phys. Rev. E 92, 022819 (2015). https://doi.org/10.1103/PhysRevE.92.022819

  100. N. Tompkins, N. Li, C. Girabawe, M. Heymann, G.B. Ermentrout, I.R. Epstein, S. Fraden, Testing Turing’s theory of morphogenesis in chemical cells. Proc. Natl. Acad. Sci. USA 111, 4397 (2014). https://doi.org/10.1073/pnas.1322005111

    Article  ADS  Google Scholar 

  101. I.Z. Kiss, Y. Zhai, J.L. Hudson, Emerging coherence in a population of chemical oscillators. Science 296, 1676 (2002). https://doi.org/10.1126/science.1070757

    Article  ADS  Google Scholar 

  102. D.K. Verma, H. Singh, P. Parmananda, A.Q. Contractor, M. Rivera, Kuramoto transition in an ensemble of mercury beating heart systems. Chaos 25, 064609 (2015). https://doi.org/10.1063/1.4921717

    Article  MathSciNet  Google Scholar 

  103. P.R. Buskohl, R.C. Kramb, R.A. Vaia, Synchronicity in composite hydrogels: Belousov–Zhabotinsky (BZ) active nodes in gelatin. J. Phys. Chem. B 119, 3595 (2015). https://doi.org/10.1021/jp512829h

    Article  Google Scholar 

  104. D.P. Rosin, D. Rontani, N.D. Haynes, E. Schöll, D.J. Gauthier, Transient scaling and resurgence of chimera states in networks of Boolean phase oscillators. Phys. Rev. E 90, 030902 (2014). https://doi.org/10.1103/PhysRevE.90.030902

  105. H. Brandtstädter, M. Braune, I. Schebesch, H. Engel, Experimental study of the dynamics of spiral pairs in light-sensitive Belousov–Zhabotinskii media using an open-gel reactor. Chem. Phys. Lett. 323, 145 (2000). https://doi.org/10.1016/S0009-2614(00)00486-3

    Article  ADS  Google Scholar 

  106. M.R. Tinsley, A.F. Taylor, Z. Huang, K. Showalter, Emergence of collective behavior in groups of excitable catalyst-loaded particles: spatiotemporal dynamical quorum sensing. Phys. Rev. Lett. 102, 158301 (2009). https://doi.org/10.1103/PhysRevLett.102.158301

  107. B. Neumann, Z. Nagy-Ungvarai, S. Müller, Interaction between silica gel matrices and the Belousov-Zhabotinsky reaction. Chem. Phys. Lett. 211, 36 (1993). https://doi.org/10.1016/0009-2614(93)80048-T

    Article  ADS  Google Scholar 

  108. S.C. Müller, T. Plesser, B. Hess, Two-dimensional spectrophotometry and pseudo-color representation of chemical reaction patterns. Sci. Nat. 73, 165 (1986). https://doi.org/10.1007/BF00417720

  109. A.-L. Barabási, E. Bonabeau, Scale-free networks. Sci. Am. 288, 60 (2003). https://doi.org/10.1038/scientificamerican0503-60

    Article  Google Scholar 

  110. D.J. Watts, S.H. Strogatz, Collective dynamics of ‘small-world’ networks. Nature 393, 440 (1998). https://doi.org/10.1038/30918

    Article  ADS  MATH  Google Scholar 

  111. L.M. Pecora, F. Sorrentino, A.M. Hagerstrom, T.E. Murphy, R. Roy, Cluster synchronization and isolated desynchronization in complex networks with symmetries. Nat. Commun. 5, 4079 (2014). https://doi.org/10.1038/ncomms5079

  112. D. Witthaut, M. Timme, Braess’s paradox in oscillator networks, desynchronization and power outage. New J. Phys. 14, 083036 (2012). https://doi.org/10.1088/1367-2630/14/8/083036

    Article  ADS  Google Scholar 

  113. L.R. Varshney, B.L. Chen, E. Paniagua, D.H. Hall, D.B. Chklovskii, Structural properties of the Caenorhabditis elegans neuronal network. PLOS Comput. Biol. 7, e1001066 (2011). https://doi.org/10.1371/journal.pcbi.1001066

    Article  ADS  Google Scholar 

  114. T.A. Jarrell, Y. Wang, A.E. Bloniarz, C.A. Brittin, M. Xu, J.N. Thomson, D.G. Albertson, D.H. Hall, S.W. Emmons, The connectome of a decision-making neural network. Science 337, 437 (2012). https://doi.org/10.1126/science.1221762

    Article  ADS  Google Scholar 

  115. P. Hänggi, P. Jung, Colored noise in dynamical systems, in Advances in Chemical Physics, vol. 89, ed. by I. Prigogine, S.A. Rice (Wiley, New York, 1994), pp. 239–326. https://doi.org/10.1002/9780470141489.ch4

    Chapter  Google Scholar 

  116. N.G.V. Kampen, Stochastic Processes in Physics and Chemistry (Elsevier, Amsterdam, 2011), http://www.sciencedirect.com/science/book/9780444529657

  117. K. Yoshikawa, R. Aihara, K. Agladze, Size-dependent Belousov-Zhabotinsky oscillation in small beads. J. Phys. Chem. A 102, 7649 (1998). https://doi.org/10.1021/jp982136d

    Article  ADS  Google Scholar 

  118. A.M. Zhabotinsky, F. Buchholtz, A.B. Kiyatkin, I.R. Epstein, Oscillations and waves in metal-ion-catalyzed bromate oscillating reactions in highly oxidized states. J. Phys. Chem. 97, 7578 (1993). https://doi.org/10.1021/j100131a030

    Article  Google Scholar 

  119. R. Toth, A.F. Taylor, M.R. Tinsley, Collective behavior of a population of chemically coupled oscillators. J. Phys. Chem. B 110, 10170 (2006). https://doi.org/10.1021/jp060732z

    Article  Google Scholar 

  120. S. Kádár, T. Amemiya, K. Showalter, Reaction mechanism for light sensitivity of the Ru(bpy)32+-catalyzed Belousov-Zhabotinsky reaction. J. Phys. Chem. A 101, 8200 (1997). https://doi.org/10.1021/jp971937y

    Article  ADS  Google Scholar 

  121. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes: The Art of Scientific Computing (Cambridge University Press, Cambridge, 2007), http://www.cambridge.org/de/academic/subjects/mathematics/numerical-recipes/numerical-recipes-art-scientific-computing-3rd-edition?format=HB&utm_source=shortlink&utm_medium=shortlink&utm_campaign=numericalrecipes

  122. I. Omelchenko, A. Zakharova, P. Hövel, J. Siebert, E. Schöll, Nonlinearity of local dynamics promotes multi-chimeras. Chaos 25, 083104 (2015). https://doi.org/10.1063/1.4927829

    Article  MathSciNet  MATH  Google Scholar 

  123. I. Omelchenko, A. Provata, J. Hizanidis, E. Schöll, P. Hövel, Robustness of chimera states for coupled FitzHugh-Nagumo oscillators. Phys. Rev. E 91, 022917 (2015). https://doi.org/10.1103/PhysRevE.91.022917

  124. A.S. Mikhailov, Foundations of Synergetics I: Distributed Active Systems (Springer, Berlin, 1990). https://doi.org/10.1007/978-3-642-78556-6

    Book  MATH  Google Scholar 

  125. M.-A. Bray, J.P. Wikswo, Use of topological charge to determine filament location and dynamics in a numerical model of scroll wave activity. IEEE Trans. Biomed. Eng. 49, 1086 (2002). https://doi.org/10.1109/TBME.2002.803516

    Article  Google Scholar 

  126. M.J. Panaggio, D.M. Abrams, Chimera states on the surface of a sphere. Phys. Rev. E 91, 022909 (2015). https://doi.org/10.1103/PhysRevE.91.022909

  127. H. Daido, Order function and macroscopic mutual entrainment in uniformly coupled limit-cycle oscillators. Prog. Theor. Phys. 88, 1213 (1992). https://doi.org/10.1143/ptp/88.6.1213

    Article  ADS  MathSciNet  Google Scholar 

  128. J.F. Totz, J. Rode, M.R. Tinsley, K. Showalter, H. Engel, Spiral wave chimera states in large populations of coupled chemical oscillators. Nat. Phys. 14, 282 (2018). https://doi.org/10.1038/s41567-017-0005-8

    Article  ADS  Google Scholar 

  129. A.T. Winfree, Varieties of spiral wave behavior: an experimentalist’s approach to the theory of excitable media. Chaos 1, 303 (1991). https://doi.org/10.1063/1.165844

    Article  MathSciNet  MATH  Google Scholar 

  130. D. Frenkel, B. Smit, Understanding Molecular Simulation: From Algorithms to Applications (Academic, New York, 2001), http://www.sciencedirect.com/science/book/9780122673511

  131. D. Barkley, M. Kness, L.S. Tuckerman, Spiral-wave dynamics in a simple model of excitable media: the transition from simple to compound rotation. Phys. Rev. A 42, 2489 (1990). https://doi.org/10.1103/PhysRevA.42.2489

    Article  ADS  MathSciNet  Google Scholar 

  132. W. Jahnke, W.E. Skaggs, A.T. Winfree, Chemical vortex dynamics in the Belousov-Zhabotinskii reaction and in the two-variable Oregonator model. J. Phys. Chem.93, 740 (1989). https://doi.org/10.1021/j100339a047

    Article  Google Scholar 

  133. D. Barkley, Euclidean symmetry and the dynamics of rotating spiral waves. Phys. Rev. Lett. 72, 164 (1994). https://doi.org/10.1103/PhysRevLett.72.164

    Article  ADS  Google Scholar 

  134. M. Wolfrum, O.E. Omel’chenko, Chimera states are chaotic transients. Phys. Rev. E 84, 015201 (2011). https://doi.org/10.1103/PhysRevE.84.015201

  135. Y.L. Maistrenko, A. Vasylenko, O. Sudakov, R. Levchenko, V.L. Maistrenko, Cascades of multiheaded chimera states for coupled phase oscillators. Int. J. Bifurc. Chaos 24, 1440014 (2014). https://doi.org/10.1142/S0218127414400148

    Article  ADS  MathSciNet  MATH  Google Scholar 

  136. I. Sendiña-Nadal, S. Alonso, V. Pérez-Muñuzuri, M. Gómez-Gesteira, V. Pérez-Villar, L. Ramírez-Piscina, J. Casademunt, J.M. Sancho, F. Sagués, Brownian motion of spiral waves driven by spatiotemporal structured noise. Phys. Rev. Lett. 84, 2734 (2000). https://doi.org/10.1103/PhysRevLett.84.2734

    Article  ADS  Google Scholar 

  137. I.V. Biktasheva, V.N. Biktashev, Wave-particle dualism of spiral waves dynamics. Phys. Rev. E 67, 026221 (2003). https://doi.org/10.1103/PhysRevE.67.026221

  138. C. Brito, I.S. Aranson, H. Chaté, Vortex glass and vortex liquid in oscillatory media. Phys. Rev. Lett. 90, 068301 (2003). https://doi.org/10.1103/PhysRevLett.90.068301

  139. M. Bär, M. Eiswirth, Turbulence due to spiral breakup in a continuous excitable medium. Phys. Rev. E 48, R1635 (1993). https://doi.org/10.1103/PhysRevE.48.R1635

    Article  ADS  Google Scholar 

  140. M. Bär, L. Brusch, Breakup of spiral waves caused by radial dynamics: Eckhaus and finite wavenumber instabilities. New J. Phys. 6, 5 (2004). https://doi.org/10.1088/1367-2630/6/1/005

    Article  ADS  Google Scholar 

  141. R. Kapral, R. Livi, G.-L. Oppo, A. Politi, Dynamics of complex interfaces. Phys. Rev. E 49, 2009 (1994). https://doi.org/10.1103/PhysRevE.49.2009

    Article  ADS  MathSciNet  Google Scholar 

  142. Z. Nagy-Ungvarai, S. Müller, Characterization of wave front instabilities in the Belousov-Zhabotinsky reaction: an overview. Int. J. Bifurc. Chaos 04, 1257 (1994). https://doi.org/10.1142/S0218127494000940

    Article  ADS  MATH  Google Scholar 

  143. L. Glass, M.C. Mackey, From Clocks to Chaos: The Rhythms of Life (Princeton University Press, Princeton, 1988), https://press.princeton.edu/titles/4308.html

  144. E.M. Izhikevich, Dynamical Systems in Neuroscience (MIT Press, Cambridge, 2007), https://mitpress.mit.edu/books/dynamical-systems-neuroscience

  145. N.W. Schultheiss, A.A. Prinz, R.J. Butera, Phase Response Curves in Neuroscience: Theory, Experiment, and Analysis, vol. 6 (Springer, Berlin, 2011). https://doi.org/10.1007/978-1-4614-0739-3

    Book  Google Scholar 

  146. L. Glass, A.T. Winfree, Discontinuities in phase-resetting experiments. Am. J. Physiol. Regul. Integr. Comp. Physiol. 246, R251 (1984), http://ajpregu.physiology.org/content/246/2/R251

    Article  Google Scholar 

  147. J. Jalife, G.K. Moe, Effect of electrotonic potentials on pacemaker activity of canine Purkinje fibers in relation to parasystole. Circ. Res. 39, 801 (1976). https://doi.org/10.1161/01.RES.39.6.801

    Article  Google Scholar 

  148. M.R. Guevara, A. Shrier, L. Glass, Phase resetting of spontaneously beating embryonic ventricular heart cell aggregates. Am. J. Physiol. Heart Circ. Physiol. 251, H1298 (1986). https://doi.org/10.1152/ajpheart.1986.251.6.H1298

    Article  Google Scholar 

  149. J.M. Anumonwo, M. Delmar, A. Vinet, D.C. Michaels, J. Jalife, Phase resetting and entrainment of pacemaker activity in single sinus nodal cells. Circ. Res. 68, 1138 (1991). https://doi.org/10.1161/01.RES.68.4.1138

    Article  Google Scholar 

  150. D.F. Russell, Respiratory pattern generation in adult lampreys (Lampetra fluviatilis): interneurons and burst resetting. J. Comp. Physiol. 158, 91 (1986). https://doi.org/10.1007/BF00614523

    Article  Google Scholar 

  151. R. Wessel, In vitro study of phase resetting and phase locking in a time-comparison circuit in the electric fish, Eigenmannia. Biophys. J. 69, 1880 (1995). https://doi.org/10.1016/S0006-3495(95)80058-5

    Article  ADS  Google Scholar 

  152. A.A. Prinz, V. Thirumalai, E. Marder, The functional consequences of changes in the strength and duration of synaptic inputs to oscillatory neurons. J. Neurosci. 23, 943 (2003), http://www.jneurosci.org/content/23/3/943

    Article  Google Scholar 

  153. S.B.S. Khalsa, M.E. Jewett, C. Cajochen, C.A. Czeisler, A phase response curve to single bright light pulses in human subjects. J. Physiol. 549, 945 (2003). https://doi.org/10.1113/jphysiol.2003.040477

    Article  Google Scholar 

  154. C.H. Johnson, J.W. Hastings, Circadian phototransduction: phase resetting and frequency of the circadian clock of Gonyaulax cells in red light. J. Biol. Rhythm. 4, 417 (1989). https://doi.org/10.1177/074873048900400403

    Article  Google Scholar 

  155. V. Varma, N. Mukherjee, N.N. Kannan, V.K. Sharma, Strong (type 0) phase resetting of activity-rest rhythm in fruit flies, Drosophila melanogaster, at low temperature. J. Biol. Rhythm. 28, 380 (2013). https://doi.org/10.1177/0748730413508922

    Article  Google Scholar 

  156. J. Rode, Synchronization in heterogeneous networks - from phase to relaxation oscillators. M.Sc. thesis, TU Berlin (2016)

    Google Scholar 

  157. V. Zykov, H. Engel, Feedback-mediated control of spiral waves. Phys. D 199, 243 (2004). https://doi.org/10.1016/j.physd.2004.10.001

    Article  ADS  MathSciNet  MATH  Google Scholar 

  158. V. Zykov, G. Bordiougov, H. Brandtstädter, I. Gerdes, H. Engel, Global control of spiral wave dynamics in an excitable domain of circular and elliptical shape. Phys. Rev. Lett. 92, 018304 (2004). https://doi.org/10.1103/PhysRevLett.92.018304

  159. J. Schlesner, V.S. Zykov, H. Brandtstädter, I. Gerdes, H. Engel, Efficient control of spiral wave location in an excitable medium with localized heterogeneities. New J. Phys. 10, 015003 (2008). https://doi.org/10.1088/1367-2630/10/1/015003

    Article  ADS  Google Scholar 

  160. J.F. Totz, Wechselwirkung spiralförmiger Erregungswellen mit kreisförmigen Heterogenitäten. B.Sc. thesis, TU Berlin, Berlin (2011)

    Google Scholar 

  161. E. Nakouzi, J.F. Totz, Z. Zhang, O. Steinbock, H. Engel, Hysteresis and drift of spiral waves near heterogeneities: from chemical experiments to cardiac simulations. Phys. Rev. E 93, 022203 (2016). https://doi.org/10.1103/PhysRevE.93.022203

  162. S. Alonso, M. Bär, Reentry near the percolation threshold in a heterogeneous discrete model for cardiac tissue. Phys. Rev. Lett. 110, 158101 (2013). https://doi.org/10.1103/PhysRevLett.110.158101

  163. A. Rothkegel, K. Lehnertz, Irregular macroscopic dynamics due to chimera states in small-world networks of pulse-coupled oscillators. New J. Phys. 16, 055006 (2014). https://doi.org/10.1088/1367-2630/16/5/055006

    Article  ADS  Google Scholar 

  164. S.-Y. Takemura et al., A visual motion detection circuit suggested by Drosophila connectomics. Nature 500, 175 (2013). https://doi.org/10.1038/nature12450

    Article  ADS  Google Scholar 

  165. Y. Chen, S. Wang, C.C. Hilgetag, C. Zhou, Features of spatial and functional segregation and integration of the primate connectome revealed by trade-off between wiring cost and efficiency. PLOS Comput. Biol. 13, e1005776 (2017). https://doi.org/10.1371/journal.pcbi.1005776

    Article  ADS  Google Scholar 

  166. T.V.P. Bliss, T. Lømo, Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J. Physiol. 232, 331 (1973). https://doi.org/10.1113/jphysiol.1973.sp010273

    Article  Google Scholar 

  167. S. Boccaletti, J.A. Almendral, S. Guan, I. Leyva, Z. Liu, I. Sendiña-Nadal, Z. Wang, Y. Zou, Explosive transitions in complex networks’ structure and dynamics: percolation and synchronization. Phys. Rep. 660, 1 (2016). https://doi.org/10.1016/j.physrep.2016.10.004

    Article  ADS  MathSciNet  MATH  Google Scholar 

  168. B. Pietras, N. Deschle, A. Daffertshofer, Equivalence of coupled networks and networks with multimodal frequency distributions: conditions for the bimodal and trimodal case. Phys. Rev. E 94, 052211 (2016). https://doi.org/10.1103/PhysRevE.94.052211

  169. S.M. Bohte, J.N. Kok, H. La Poutré, Error-backpropagation in temporally encoded networks of spiking neurons. Neurocomputing 48, 17 (2002). https://doi.org/10.1016/S0925-2312(01)00658-0

    Article  MATH  Google Scholar 

  170. R. Bates, O. Blyuss, A. Zaikin, Stochastic resonance in an intracellular genetic perceptron. Phys. Rev. E 89, 032716 (2014). https://doi.org/10.1103/PhysRevE.89.032716

  171. L. Gammaitoni, P. Hänggi, P. Jung, F. Marchesoni, Stochastic resonance. Rev. Mod. Phys. 70, 223 (1998). https://doi.org/10.1103/RevModPhys.70.223

    Article  ADS  Google Scholar 

  172. H. Gang, T. Ditzinger, C.Z. Ning, H. Haken, Stochastic resonance without external periodic force. Phys. Rev. Lett. 71, 807 (1993). https://doi.org/10.1103/PhysRevLett.71.807

    Article  ADS  Google Scholar 

  173. A.S. Pikovsky, J. Kurths, Coherence resonance in a noise-driven excitable system. Phys. Rev. Lett. 78, 775 (1997). https://doi.org/10.1103/PhysRevLett.78.775

    Article  ADS  MathSciNet  MATH  Google Scholar 

  174. K. Wimmer, D.Q. Nykamp, C. Constantinidis, A. Compte, Bump attractor dynamics in prefrontal cortex explains behavioral precision in spatial working memory. Nat. Neurosci. 17, 431 (2014). https://doi.org/10.1038/nn.3645

    Article  Google Scholar 

  175. A.J. Ijspeert, Central pattern generators for locomotion control in animals and robots: a review. Neural Netw. 21, 642 (2008). https://doi.org/10.1016/j.neunet.2008.03.014

    Article  Google Scholar 

  176. A.H. Cohen, P. Wallén, The neuronal correlate of locomotion in fish. Exp. Brain Res. 41, 11 (1980). https://doi.org/10.1007/BF00236674

  177. I. Delvolvé, P. Branchereau, R. Dubuc, J.-M. Cabelguen, Fictive rhythmic motor patterns induced by NMDA in an in vitro brain stem–spinal cord preparation from an adult urodele. J. Neurophysiol. 82, 1074 (1999), http://jn.physiology.org/content/82/2/1074

    Article  Google Scholar 

  178. S. Steingrube, M. Timme, F. Wörgötter, P. Manoonpong, Self-organized adaptation of a simple neural circuit enables complex robot behaviour. Nat. Phys. 6, 224 (2010). https://doi.org/10.1038/nphys1508

    Article  ADS  Google Scholar 

  179. N.E. Kouvaris, T. Isele, A.S. Mikhailov, E. Schöll, Propagation failure of excitation waves on trees and random networks. Europhys. Lett. 106, 68001 (2014). https://doi.org/10.1209/0295-5075/106/68001

    Article  ADS  Google Scholar 

  180. M. Salathé, M. Kazandjieva, J.W. Lee, P. Levis, M.W. Feldman, J.H. Jones, A high-resolution human contact network for infectious disease transmission. Proc. Natl. Acad. Sci. USA 107, 22020 (2010). https://doi.org/10.1073/pnas.1009094108

    Article  ADS  Google Scholar 

  181. D. Brockmann, D. Helbing, The hidden geometry of complex, network-driven contagion phenomena. Science 342, 1337 (2013). https://doi.org/10.1126/science.1245200

    Article  ADS  Google Scholar 

  182. T.W. Valente, Network Models of the Diffusion of Innovations (Hampton Press, Cresskill, 1995)

    Google Scholar 

  183. E.R. Kandel, J.H. Schwartz, T.M. Jessell, S.A. Siegelbaum, A.J. Hudspeth (eds.), Principles of Neural Science (McGraw-Hill, New York, 2012), http://www.principlesofneuralscience.com/

  184. A.E. Pereda, Electrical synapses and their functional interactions with chemical synapses. Nat. Rev. Neurosci. 15, 250 (2014). https://doi.org/10.1038/nrn3708

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Frederik Totz .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Totz, J.F. (2019). Spiral Wave Chimera. In: Synchronization and Waves in Active Media. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-11057-4_4

Download citation

Publish with us

Policies and ethics