Skip to main content

Strategies and Tools for Sequencing Duckweeds

  • Chapter
  • First Online:
The Duckweed Genomes

Part of the book series: Compendium of Plant Genomes ((CPG))

  • 811 Accesses

Abstract

Duckweeds belong to the smallest flowering plants that undergo fast vegetative growth in an aquatic environment. Due to their special plant characteristics, they are commonly used in wastewater treatment, biofuel, and animal feed. Sequencing duckweed genomes will promote their development in molecular biology and functional genomics, thereby facilitating its application in feed, energy, and environmental protection. In addition to extremely fast growth speed, the genome sizes of duckweeds are varied from 150 to 1881 Mb with a roughly 13-fold change. But with the rapid development of sequencing technology and dramatic decrease of sequencing cost, sequencing different kinds of duckweed genomes has become feasible. Here, we review the strategies and tools for sequencing and assembling duckweeds genomes. We introduce the platforms of the next-generation sequencing (NGS) (Illumina paired-end sequencing with short reads) and the third-generation sequencing (TGS) (PacBio and Nanopore sequencing with long reads) that are broadly applied in plant genomics. We also overview the recent widely used scaffolding technologies including Bionano, Hi-C, and 10X Genomics. Tools for de novo assembling duckweeds genomes are determined by the sequencing platforms that give short reads or long reads. The programs of SOAPdenovo and ALLPATHS-LG are sufficient to assemble Illumina short reads; whereas, the assemblers of FALCON, CANU, MECAT, and HGAP are broadly used in assembling plant genomes sequenced by the platforms of PacBio or Nanopore. The hybrid assembly tool such as MaSuRCA is required for the integration of short and long reads. We expect that the strategies and tools will accelerate the duckweed genomics and promote their industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Dous EK, George B, Al-Mahmoud ME, Al-Jaber MY, Wang H et al (2011) De novo genome sequencing and comparative genomics of date palm (Phoenix dactylifera). Nat Biotechnol 29:521–527

    Article  CAS  PubMed  Google Scholar 

  • Berlin K, Koren S, Chin CS, Drake JP, Landolin JM et al (2015) Assembling large genomes with single-molecule sequencing and locality-sensitive hashing. Nat Biotechnol 33:623–630

    Article  CAS  PubMed  Google Scholar 

  • Boetzer M, Henkel CV, Jansen HJ, Butler D, Pirovano W (2011) Scaffolding pre-assembled contigs using SSPACE. Bioinformatics 27:578–579

    Article  CAS  PubMed  Google Scholar 

  • Burton JN, Adey A, Patwardhan RP, Qiu R, Kitzman JO et al (2013) Chromosome-scale scaffolding of de novo genome assemblies based on chromatin interactions. Nat Biotechnol 31:1119–1125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao HX, Vu GT, Wang W, Appenroth KJ, Messing J et al (2016) The map-based genome sequence of Spirodela polyrhiza aligned with its chromosomes, a reference for karyotype evolution. New Phytol 209:354–363

    Article  CAS  PubMed  Google Scholar 

  • Chaisson MJ, Tesler G (2012) Mapping single molecule sequencing reads using basic local alignment with successive refinement (BLASR): application and theory. BMC Bioinformatics 13:238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chibucos MC, Crabtree J, NagarajS, Chaturvedi S, Chaturvedi V (2013) Draft genome sequences of human pathogenic fungus Geomyces pannorum sensu lato and bat white nose syndrome pathogen Geomyces (Pseudogymnoascus) destructans. Genome Announcements 1: e01045–01013

    Google Scholar 

  • Chin J (2016) Falcon Genome Assembly Tool Kit Manual

    Google Scholar 

  • Denisov G, Walenz B, Halpern AL, Miller J, Axelrod N et al (2008) Consensus generation and variant detection by Celera Assembler. Bioinformatics 24:1035–1040

    Article  CAS  PubMed  Google Scholar 

  • Deschamps S, Zhang Y, Llaca V, Ye L, May G et al (2018) A chromosome-scale assembly of the sorghum genome using nanopore sequencing and optical mapping. bioRxiv: 327817

    Google Scholar 

  • Ernst E (2016) Status of the Lemna gibba 7742a and Lemna minor 8627 genomes, pp. 9–10. 3

    Google Scholar 

  • Gnerre S, Maccallum I, Przybylski D, Ribeiro FJ, Burton JN et al (2011) High-quality draft assemblies of mammalian genomes from massively parallel sequence data. Proc Natl Acad Sci U S A 108:1513–1518

    Article  CAS  PubMed  Google Scholar 

  • Guo L, Winzer T, Yang X, Li Y, Ning Z et al (2018) The opium poppy genome and morphinan production. Science

    Google Scholar 

  • Guo S, Zhang J, Sun H, Salse J, Lucas WJ et al (2013) The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions. Nat Genet 45:51–58

    Article  CAS  PubMed  Google Scholar 

  • Henson J, Tischler G, Ning Z (2012) Next-generation sequencing and large genome assemblies. Pharmacogenomics 13:901–915

    Article  CAS  PubMed  Google Scholar 

  • Hirsch CN, Hirsch CD, Brohammer AB, Bowman MJ, Soifer I et al (2016) Draft assembly of elite Inbred Line PH207 provides insights into genomic and transcriptome diversity in maize. Plant Cell 28:2700–2714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang S, Li R, Zhang Z, Li L, Gu X et al (2009) The genome of the cucumber, Cucumis sativus L. Nat Genet 41:1275–1281

    Article  CAS  PubMed  Google Scholar 

  • Jain M, Koren S, Miga KH, Quick J, Rand AC et al (2018) Nanopore sequencing and assembly of a human genome with ultra-long reads. Nat Biotechnol 36:338–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jarvis DE, Ho YS, Lightfoot DJ, Schmöckel SM, Li B et al (2017) The genome of Chenopodium quinoa. Nature: 1–20

    Google Scholar 

  • Jiao W-B, Accinelli GG, Hartwig B, Kiefer C, Baker D et al (2017a) Improving and correcting the contiguity of long-read genome assemblies of three plant species using optical mapping and chromosome conformation capture data. Genome research

    Google Scholar 

  • Jiao Y, Peluso P, Shi J, Liang T, Stitzer MC et al (2017b) Improved maize reference genome with single-molecule technologies. Nature 546:524–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang C, Darwish O, Geretz A, Shahan R, Alkharouf N et al (2013) Genome-scale transcriptomic insights into early-stage fruit development in woodland strawberry Fragaria vesca. Plant Cell 25:1960–1978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koren S, Phillippy AM (2015) One chromosome, one contig: complete microbial genomes from long-read sequencing and assembly. Curr Opin Microbiol 23:110–120

    Article  CAS  PubMed  Google Scholar 

  • Koren S, Schatz MC, Walenz BP, Martin J, Howard JT et al (2012) Hybrid error correction and de novo assembly of single-molecule sequencing reads. Nat Biotechnol 30:693–700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH et al (2017) Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res 27:722–736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar A, Bennetzen JL (1999) Plant retrotransposons. Annu Rev Genet 33:479–532

    Article  CAS  PubMed  Google Scholar 

  • Lan T, Renner T, Ibarra-Laclette E, Farr KM, Chang T-H et al (2017) Long-read sequencing uncovers the adaptive topography of a carnivorous plant genome. Proc Natl Acad Sci 114:E4435–E4441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li C, Lin F, An D, Wang W, Huang R (2018) Genome sequencing and assembly by long reads in plants. Genes 9:6

    Article  CAS  Google Scholar 

  • Li H (2016) Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences. Bioinformatics 32:2103–2110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo R, Liu B, Xie Y, Li Z, Huang W et al (2012) SOAP denovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 1:18

    Article  PubMed  PubMed Central  Google Scholar 

  • Mascher M, Gundlach H, Himmelbach A, Beier S, Twardziok SO et al (2017) A chromosome conformation capture ordered sequence of the barley genome. Nature 544:427–433

    Article  CAS  PubMed  Google Scholar 

  • Michael TP, Bryant D, Gutierrez R, Borisjuk N, Chu P et al (2017) Comprehensive definition of genome features in Spirodela polyrhiza by high-depth physical mapping and short-read DNA sequencing strategies. Plant J 89:617–635

    Article  CAS  PubMed  Google Scholar 

  • Michael TP, VanBuren R (2015) Progress, challenges and the future of crop genomes. Curr Opin Plant Biol 24:71–81

    Article  CAS  PubMed  Google Scholar 

  • Ming R, Hou S, Feng Y, Yu Q, Dionne-Laporte A et al (2008) The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature 452:991–996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Myers EW, Sutton GG, Delcher AL, Dew IM, Fasulo DP et al (2000) A whole-genome assembly of Drosophila. Science 287:2196–2204

    Article  CAS  PubMed  Google Scholar 

  • Myers G (2014) Efficient local alignment discovery amongst noisy long reads. In: International workshop on algorithms in bioinformatics. Springer, pp 52–67

    Google Scholar 

  • Pacific B (2018a) Produce exceptional results with high-quality long reads. Pacific Biosciences

    Google Scholar 

  • Pacific B (2018b) Sequel System: high-throughput, cost-effective access to SMRT Sequencing

    Google Scholar 

  • Phillippy AM (2017) New advances in sequence assembly. Genome Res 27:xi–xiii

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schadt EE, Turner S, Kasarskis A (2010) A window into third-generation sequencing. Hum Mol Genet 19: R227–240

    Article  CAS  PubMed  Google Scholar 

  • Shibata TF, Maeda T, Nikoh N, Yamaguchi K, Oshima K et al (2013) Complete Genome Sequence of Burkholderia sp. Strain RPE64, Bacterial Symbiont of the Bean Bug Riptortus pedestris. Genome Announc 1

    Google Scholar 

  • Sovic I, Sikic M, Wilm A, Fenlon SN, Chen S et al (2016) Fast and sensitive mapping of nanopore sequencing reads with GraphMap. Nat Commun 7:11307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teh BT, Lim K, Yong CH, Ng CCY, Rao SR et al (2017) The draft genome of tropical fruit durian (Durio zibethinus). Nat Genet 49:1633–1641

    Article  CAS  PubMed  Google Scholar 

  • Van Hoeck A, Horemans N, Monsieurs P, Cao HX, Vandenhove H et al (2015) The first draft genome of the aquatic model plant Lemna minor opens the route for future stress physiology research and biotechnological applications. Biotechnol Biofuels 8:188

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • VanBuren R, Bryant D, Edger PP, Tang H, Burgess D et al (2015) Single-molecule sequencing of the desiccation- tolerant grass Oropetium thomaeum. Nature 527:508–511

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Haberer G, Gundlach H, Glasser C, Nussbaumer T et al (2014) The Spirodela polyrhiza genome reveals insights into its neotenous reduction fast growth and aquatic lifestyle. Nat Commun 5:3311

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Kerstetter RA, Michael TP (2011) Evolution of genome size in duckweeds (Lemnaceae). J Botany

    Google Scholar 

  • Weirather JL, de Cesare M, Wang Y, Piazza P, Sebastiano V et al (2017) Comprehensive comparison of pacific biosciences and oxford nanopore technologies and their applications to transcriptome analysis. F1000Res 6:100

    Article  PubMed  PubMed Central  Google Scholar 

  • Willing EM, Rawat V, Mandakova T, Maumus F, James GV et al (2015) Genome expansion of Arabis alpina linked with retrotransposition and reduced symmetric DNA methylation. Nature Plants 1:14023

    Article  CAS  PubMed  Google Scholar 

  • Xia M, Han X, He H, Yu R, Zhen G et al (2018) Improved de novo genome assembly and analysis of the Chinese cucurbit Siraitia grosvenorii, also known as monk fruit or luo-han-guo. GigaScience 7:giy067

    Google Scholar 

  • Xiao CL, Chen Y, Xie SQ, Chen KN, Wang Y et al (2017) MECAT: fast mapping, error correction, and de novo assembly for single-molecule sequencing reads. Nat Methods 14:1072–1074

    Article  CAS  PubMed  Google Scholar 

  • Zhang GQ, Liu KW, Li Z, Lohaus R, Hsiao YY et al (2017) The Apostasia genome and the evolution of orchids. Nature 549:379–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zimin A, Stevens KA, Crepeau MW, Holtz-Morris A, Koriabine M et al (2014) Sequencing and assembly of the 22-gb loblolly pine genome. Genetics 196:875–890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zimin AV, Marçais G, Puiu D, Roberts M, Salzberg SL et al (2013) The MaSuRCA genome assembler. Bioinformatics 29:2669–2677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zimin AV, Puiu D, Luo M-C, Zhu T, Koren S et al (2017) Hybrid assembly of the large and highly repetitive genome of Aegilops tauschii, a progenitor of bread wheat, with the MaSuRCA mega-reads algorithm. Genome research

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changsheng Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Xiang, X., Li, C. (2020). Strategies and Tools for Sequencing Duckweeds. In: Cao, X., Fourounjian, P., Wang, W. (eds) The Duckweed Genomes. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-030-11045-1_6

Download citation

Publish with us

Policies and ethics