Skip to main content

Cytogenetics, Epigenetics and Karyotype Evolution of Duckweeds

  • Chapter
  • First Online:
The Duckweed Genomes

Part of the book series: Compendium of Plant Genomes ((CPG))

Abstract

Duckweed is an interesting model for studying cytogenetics, epigenetics and karyotype evolution. Belonging to the monocotyledonous arum or aroid family Araceae, these aquatic plants present an approximately 12-fold range of different genome sizes, from 158 Mbp (Spirodela sps.) to 1881 Mbp (Wolffia arrhiza) and variable chromosome numbers. In addition to reduced gene repertoires that found in so far all published duckweed genomes of Spirodela, Lemna and Wolffia species, several peculiar genome and epigenome features (e.g. the lowest copy number of genes coding for rRNA, extreme levels of global DNA methylation, and atypical patterns of heterochromatic and euchromatic territories) indicate a unique and interesting history of duckweed genome evolution, organization and adaptation to plants with simplified body architecture and extremely fast growth rate. Together with the high-throughput long-read, long-range information and optical mapping technologies, available cytogenetic resources, including an efficient and robust protocol of multicolour fluorescence in situ hybridization (mcFISH) and mitotic chromosome preparation, and a Spirodela genome-integrated bacterial-artificial-chromosome (BAC) map with ancestral chromosome linkages allow further comprehensive comparative genomic and cytogenetic analysis between duckweed, its close relatives, and other monocotyledonous plants of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Appenroth KJ, Crawford DJ, Les DH (2015) After the genome sequencing of duckweed—how to proceed with research on the fastest growing angiosperm? Plant Biol (Stuttg) 17:1–4. https://doi.org/10.1111/Plb.12248

    Article  Google Scholar 

  • Bennett MD, Leitch IJ, Price HJ, Johnston JS (2003) Comparisons with Caenorhabditis (approximately 100 Mb) and Drosophila (approximately 175 Mb) using flow cytometry show genome size in Arabidopsis to be approximately 157 Mb and thus approximately 25% larger than the Arabidopsis genome initiative estimate of approximately 125 Mb. Ann Bot 91(5):547–557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blackburn KB (1933) Notes on the chromosomes of the duckweeds (Lemnaceae) introducing the question of chromosome size. In: Proceedings of University Durham Philosophy Society. pp 84–90

    Google Scholar 

  • Bog M, Lautenschlager U, Landrock M, Landolt E, Fuchs J, Sowjanya Sree K, Oberprieler C, Appenroth K-J (2015) Genetic characterization and barcoding of taxa in the genera Landoltia and Spirodela (Lemnaceae) by three plastidic markers and amplified fragment length polymorphism (AFLP). Hydrobiologia 1–14. https://doi.org/10.1007/s10750-014-2163-3

    Article  CAS  Google Scholar 

  • Cabrera LI, Salazar GA, Chase MW, Mayo SJ, Bogner J, Dávila P (2008) Phylogenetic relationships of aroids and duckweeds (Araceae) inferred from coding and noncoding plastid DNA. Am J Bot 95(9):1153–1165. https://doi.org/10.3732/ajb.0800073

    Article  CAS  PubMed  Google Scholar 

  • Cao HX, Vu GT, Wang W, Appenroth KJ, Messing J, Schubert I (2016) The map-based genome sequence of Spirodela polyrhiza aligned with its chromosomes, a reference for karyotype evolution. New Phytol 209(1):354–363. https://doi.org/10.1111/nph.13592

    Article  CAS  PubMed  Google Scholar 

  • Cao HX, Vu GTH, Wang W, Messing J, Schubert I (2015) Chromatin organisation in duckweed interphase nuclei in relation to the nuclear DNA content. Plant Biol (Stuttg) 17:120–124. https://doi.org/10.1111/plb.12194

    Article  CAS  Google Scholar 

  • Cavalier-Smith T (1985) The evolution of genome size. Wiley Ltd, Chichester, UK

    Google Scholar 

  • Cusimano N, Bogner J, Mayo SJ, Boyce PC, Wong SY, Hesse M, Hetterscheid WLA, Keating RC, French JC (2011) Relationships within the araceae: comparison of morphological patterns with molecular phylogenies. Am J Bot 98(4):654–668. https://doi.org/10.3732/ajb.1000158

    Article  PubMed  Google Scholar 

  • Daubs EH (1962) A monograph of Lemnaceae. University of Illinois at Urbana-Champaign

    Google Scholar 

  • de Vries J, Archibald JM (2018) Plant evolution: landmarks on the path to terrestrial life. New Phytol. https://doi.org/10.1111/nph.14975

    Article  PubMed  Google Scholar 

  • Engler A (1876) Vergleichende Untersuchungen über die morphologischen Verhältnisse der Araceae, vol 39. vol 3. Druck von E. Blochmann & Sohn für die Akademie in Commission bei Wilh. Engelmann in Leipzig

    Google Scholar 

  • Engler A (1889) Lemnaceae In: Engler A, Prantl K (eds) Die Natürlichen Pflanzen Familien. pp 154–164

    Google Scholar 

  • Geber G (1989) Zur Karyosystematik der Lemnaceae. University of Vienna, Vienna, Austria

    Google Scholar 

  • Gray SF (1821) A natural arrangement of British plants

    Google Scholar 

  • Gregory TR (2005) The evolution of the genome. Academic Press, Burlington. https://doi.org/10.1016/B978-0-12-301463-4.X5000-1

    Article  Google Scholar 

  • Hegelmaier F (1868) Die Lemnaceen: eine monographische Untersuchung. Engelmann

    Google Scholar 

  • Hegelmaier F (1895) Systematische übersicht der Lemnaceen

    Google Scholar 

  • Henriquez CL, Arias T, Pires JC, Croat TB, Schaal BA (2014) Phylogenomics of the plant family Araceae. Mol Phylogenet Evol 75:91–102. https://doi.org/10.1016/j.ympev.2014.02.017

    Article  PubMed  Google Scholar 

  • Ho EKH, Bartkowska M, Wright SI, Agrawal AF (2019) Population genomics of the facultatively asexual duckweed Spirodela polyrhiza. New Phytol. https://doi.org/10.1111/nph.16056

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu TT, Pattyn P, Bakker EG, Cao J, Cheng JF, Clark RM, Fahlgren N, Fawcett JA, Grimwood J, Gundlach H, Haberer G, Hollister JD, Ossowski S, Ottilar RP, Salamov AA, Schneeberger K, Spannagl M, Wang X, Yang L, Nasrallah ME, Bergelson J, Carrington JC, Gaut BS, Schmutz J, Mayer KF, Van de Peer Y, Grigoriev IV, Nordborg M, Weigel D, Guo YL (2011) The Arabidopsis lyrata genome sequence and the basis of rapid genome size change. Nat Genet 43(5):476–481. https://doi.org/10.1038/ng.807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kihara H (1947) Ancestors of common wheat. Tokyo: Sogensha Tokyo (in Japanese) Cited by Kimura M, Ohta T On some principles governing molecular evolution. Proc Natl Acad Sci USA 71:2848–2852

    Google Scholar 

  • Landolt E (1986) The family of Lemnaceae—a monographic study, vol 1. Veroffentlichungen des Geobotanischen Institutes der Eidgenossischen Technischen Hochschule, Stiftung Rubel, Zurich

    Google Scholar 

  • Landolt E (1992) Wolffiella caudata, a new Lemnaceae species from the Bolivian Amazon region. Berichte des Geobotanischen Institutes der Eidgenössischen Technischen Hochschule Stiftung Ruebel 58:121–123

    Google Scholar 

  • Landolt E (1994) Taxonomy and ecology of the section Wolffia of the genus Wolffia (Lemnaceae). Ber Geobot Inst ETH, Stiftung Rübel, Zürich 60:137–151

    Google Scholar 

  • Landolt E (1998a) Lemna yungensis, a new duckweed species from rocks of the Andean Yungas in Bolivia. Bull Geobot Inst ETH 64:15–21

    Google Scholar 

  • Landolt E (1998b) Lemnaceae. In: Flowering plants monocotyledons. Springer, pp 264–270

    Google Scholar 

  • Landolt E, Kandeler R (1987) Biosystematic investigations in the family of duckweeds (Lemnaceae), vol 4: The family of Lemnaceae-a monographic study, vol 2 (phytochemistry, physiology, application, bibliography). Veroeffentlichungen des Geobotanischen Instituts der ETH, Stiftung Ruebel (Switzerland)

    Google Scholar 

  • Michael TP, Bryant D, Gutierrez R, Borisjuk N, Chu P, Zhang H, Xia J, Zhou J, Peng H, El Baidouri M, Ten Hallers B, Hastie AR, Liang T, Acosta K, Gilbert S, McEntee C, Jackson SA, Mockler TC, Zhang W, Lam E (2017) Comprehensive definition of genome features in Spirodela polyrhiza by high-depth physical mapping and short-read DNA sequencing strategies. Plant J 89(3):617–635. https://doi.org/10.1111/tpj.13400

    Article  CAS  PubMed  Google Scholar 

  • Nauheimer L, Metzler D, Renner SS (2012) Global history of the ancient monocot family Araceae inferred with models accounting for past continental positions and previous ranges based on fossils. New Phytol 195(4):938–950. https://doi.org/10.1111/j.1469-8137.2012.04220.x

    Article  PubMed  Google Scholar 

  • Olsen JL, Rouze P, Verhelst B, Lin YC, Bayer T, Collen J, Dattolo E, De Paoli E, Dittami S, Maumus F, Michel G, Kersting A, Lauritano C, Lohaus R, Topel M, Tonon T, Vanneste K, Amirebrahimi M, Brakel J, Bostrom C, Chovatia M, Grimwood J, Jenkins JW, Jueterbock A, Mraz A, Stam WT, Tice H, Bornberg-Bauer E, Green PJ, Pearson GA, Procaccini G, Duarte CM, Schmutz J, Reusch TB, Van de Peer Y (2016) The genome of the seagrass Zostera marina reveals angiosperm adaptation to the sea. Nature. https://doi.org/10.1038/nature16548

    Article  PubMed  Google Scholar 

  • Schubert I, Vu GT (2016) Genome stability and evolution: Attempting a holistic view. Trends Plant Sci 21(9):749–757. https://doi.org/10.1016/j.tplants.2016.06.003

    Article  CAS  PubMed  Google Scholar 

  • Sree KS, Bog M, Appenroth KJ (2016) Taxonomy of duckweeds (Lemnaceae), potential new crop plants. Emir J Food Agr 28(5):291–302. https://doi.org/10.9755/ejfa.2016-01-038

    Article  Google Scholar 

  • The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408(6814):796–815. https://doi.org/10.1038/35048692

    Article  Google Scholar 

  • Urbanska-Worytkiewicz K (1980) Cytological variation within the family of Lemnaceae. In: Landolt E (ed) Biosystematic investigations in the family duckweeds (Lemnaceae), vol 70. Veroff. Geobot. Inst.ETH, Stiftung Rubel, Zürich, pp 30–101

    Google Scholar 

  • Van Hoeck A, Horemans N, Monsieurs P, Cao HX, Vandenhove H, Blust R (2015) The first draft genome of the aquatic model plant Lemna minor opens the route for future stress physiology research and biotechnological applications. Biotechnol Biofuels 8(1):1–13. https://doi.org/10.1186/s13068-015-0381-1

    Article  CAS  Google Scholar 

  • Wang W, Haberer G, Gundlach H, Glasser C, Nussbaumer T, Luo MC, Lomsadze A, Borodovsky M, Kerstetter RA, Shanklin J, Byrant DW, Mockler TC, Appenroth KJ, Grimwood J, Jenkins J, Chow J, Choi C, Adam C, Cao XH, Fuchs J, Schubert I, Rokhsar D, Schmutz J, Michael TP, Mayer KF, Messing J (2014) The Spirodela polyrhiza genome reveals insights into its neotenous reduction fast growth and aquatic lifestyle. Nat Commun 5:3311. https://doi.org/10.1038/ncomms4311

    Article  CAS  PubMed  Google Scholar 

  • Wang WQ, Kerstetter R, Michael TP (2011) Evolution of genome size in duckweeds (Lemnaceae). J Botany 2011:1300099. https://doi.org/10.1155/2011/570319

    Article  CAS  Google Scholar 

  • Weir W, Capewell P, Foth B, Clucas C, Pountain A, Steketee P, Veitch N, Koffi M, De Meeus T, Kabore J, Camara M, Cooper A, Tait A, Jamonneau V, Bucheton B, Berriman M, MacLeod A (2016) Population genomics reveals the origin and asexual evolution of human infective trypanosomes. Elife 5:e11473. https://doi.org/10.7554/eLife.11473.006

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu S, Stapley J, Gablenz S, Boyer J, Appenroth KJ, Sree KS, Gershenzon J, Widmer A, Huber M (2019) Low genetic variation is associated with low mutation rate in the giant duckweed. Nat Commun 10(1):1243. https://doi.org/10.1038/s41467-019-09235-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Charlotte Ost (University of Halle-Wittenberg) for reading the article and for critical discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuan Hieu Cao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cao, X.H., Vu, G.T.H. (2020). Cytogenetics, Epigenetics and Karyotype Evolution of Duckweeds. In: Cao, X., Fourounjian, P., Wang, W. (eds) The Duckweed Genomes. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-030-11045-1_4

Download citation

Publish with us

Policies and ethics