Fast, Visual and Interactive Semi-supervised Dimensionality Reduction

  • Dimitris Spathis
  • Nikolaos PassalisEmail author
  • Anastasios Tefas
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11132)


Recent advances in machine learning allow us to analyze and describe the content of high-dimensional data ranging from images and video to text and audio data. In order to visualize that data in 2D or 3D, usually Dimensionality Reduction (DR) techniques are employed. Most of these techniques produce static projections without taking into account corrections from humans or other data exploration scenarios. In this work, we propose a novel interactive DR framework that is able to learn the optimal projection by exploiting the user interactions with the projected data. We evaluate the proposed method under a widely used interaction scenario in multidimensional projection literature, i.e., project a subset of the data, rearrange them better in classes, and then project the rest of the dataset, and we show that it greatly outperforms competitive baseline and state-of-the-art techniques, while also being able to readily adapt to the computational requirements of different applications.


Interactive dimensionality reduction Similarity-embeddings 


  1. 1.
    LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)CrossRefGoogle Scholar
  2. 2.
    Amershi, S., Cakmak, M., Knox, W.B., Kulesza, T.: Power to the people: the role of humans in interactive machine learning. AI Mag. 35(4), 105–120 (2014)CrossRefGoogle Scholar
  3. 3.
    Fails, J.A., Olsen Jr, D.R.: Interactive machine learning. In: Proceedings of the 8th International Conference on Intelligent User Interfaces, pp. 39–45. ACM (2003)Google Scholar
  4. 4.
    van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. Nov(10), 2579–2605 (2008)zbMATHGoogle Scholar
  5. 5.
    Passalis, N., Tefas, A.: Dimensionality reduction using similarity-induced embeddings. IEEE Trans. Neural Netw. Learn. Syst. 99, 1–13 (2017)Google Scholar
  6. 6.
    Derrien, T., André, C., Galibert, F., Hitte, C.: Autograph: an interactive web server for automating and visualizing comparative genome maps. Bioinformatics 23(4), 498–499 (2006)CrossRefGoogle Scholar
  7. 7.
    Wang, Y., et al.: The 3D genome browser: a web-based browser for visualizing 3D genome organization and long-range chromatin interactions. BioRxiv 112268 (2017)Google Scholar
  8. 8.
    Jolliffe, I.: Principal component analysis. Wiley Online Library (2002)Google Scholar
  9. 9.
    Kruskal, J.B., Wish, M.: Multidimensional scaling, vol. 11 (1978)CrossRefGoogle Scholar
  10. 10.
    McInnes, L., Healy, J.: UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction. ArXiv e-prints arXiv:1802.03426, February 2018
  11. 11.
    Endert, A., Han, C., Maiti, D., House, L., North, C.: Observation-level interaction with statistical models for visual analytics. In: 2011 IEEE Conference on Visual Analytics Science and Technology (VAST), pp. 121–130. IEEE (2011)Google Scholar
  12. 12.
    Joia, P., Coimbra, D., Cuminato, J.A., Paulovich, F.V., Nonato, L.G.: Local affine multidimensional projection. IEEE Trans. Vis. Comput. Graph. 17(12), 2563–2571 (2011)CrossRefGoogle Scholar
  13. 13.
    Paulovich, F.V., Silva, C.T., Nonato, L.G.: Two-phase mapping for projecting massive data sets. IEEE Trans. Vis. Comput. Graph. 16(6), 1281–1290 (2010)CrossRefGoogle Scholar
  14. 14.
    Tejada, E., Minghim, R., Nonato, L.G.: On improved projection techniques to support visual exploration of multi-dimensional data sets. Inf. Vis. 2(4), 218–231 (2003)CrossRefGoogle Scholar
  15. 15.
    Barbosa, A., Paulovich, F.V., Paiva, A., Goldenstein, S., Petronetto, F., Nonato, L.G.: Visualizing and interacting with kernelized data. IEEE Trans. Vis. Comput. Graph. 22(3), 1314–1325 (2016)CrossRefGoogle Scholar
  16. 16.
    Kingma, D., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
  17. 17.
    Drineas, P., Mahoney, M.W.: On the nyström method for approximating a gram matrix for improved kernel-based learning. J. Mach. Learn. Res. 6(Dec), 2153–2175 (2005)MathSciNetzbMATHGoogle Scholar
  18. 18.
    LeCun, Y.: The mnist database of handwritten digits (1998).
  19. 19.
    Lichman, M.: UCI machine learning repository (2013)Google Scholar
  20. 20.
    Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987)CrossRefGoogle Scholar
  21. 21.
    Belkin, M., Niyogi, P., Sindhwani, V.: Manifold regularization: a geometric framework for learning from labeled and unlabeled examples. J. Mach. Learn. Res. 7, 2399–2434 (2006)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Zhang, Y., Zhang, Z., Qin, J., Zhang, L., Li, B., Li, F.: Semi-supervised local multi-manifold isomap by linear embedding for feature extraction. Pattern Recognit. 76, 662–678 (2018)CrossRefGoogle Scholar
  23. 23.
    Glorot, X., Bordes, A., Bengio, Y.: Domain adaptation for large-scale sentiment classification: a deep learning approach. In: Proceedings of the International Conference on Machine Learning, pp. 513–520 (2011)Google Scholar
  24. 24.
    Pan, S.J., Yang, Q., et al.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2010)CrossRefGoogle Scholar
  25. 25.
    Kim, J., Chung, H.J., Park, C.H., Park, W.Y., Kim, J.H.: Chromoviz: multimodal visualization of gene expression data onto chromosomes using scalable vector graphics. Bioinformatics 20(7), 1191–1192 (2004)CrossRefGoogle Scholar
  26. 26.
    Liu, Y., Liu, L., Guo, Y., Lew, M.S.: Learning visual and textual representations for multimodal matching and classification. Pattern Recognit. 84, 51–67 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Dimitris Spathis
    • 1
    • 2
  • Nikolaos Passalis
    • 1
    Email author
  • Anastasios Tefas
    • 1
  1. 1.Aristotle University of ThessalonikiThessalonikiGreece
  2. 2.University of CambridgeCambridgeUK

Personalised recommendations