Characterization of Visual Object Representations in Rat Primary Visual Cortex

  • Sebastiano VasconEmail author
  • Ylenia Parin
  • Eis Annavini
  • Mattia D’Andola
  • Davide Zoccolan
  • Marcello Pelillo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11131)


For most animal species, quick and reliable identification of visual objects is critical for survival. This applies also to rodents, which, in recent years, have become increasingly popular models of visual functions. For this reason in this work we analyzed how various properties of visual objects are represented in rat primary visual cortex (V1). The analysis has been carried out through supervised (classification) and unsupervised (clustering) learning methods. We assessed quantitatively the discrimination capabilities of V1 neurons by demonstrating how photometric properties (luminosity and object position in the scene) can be derived directly from the neuronal responses.


Rat’s visual system Core Object Recognition Objects classification 



This work was supported by a European Research Council Consolidator Grant (DZ, project n. 616803-LEARN2SEE).


  1. 1.
    Baldassi, C., Alemi-Neissi, A., Pagan, M., DiCarlo, J.J., Zecchina, R., Zoccolan, D.: Shape similarity, better than semantic membership, accounts for the structure of visual object representations in a population of monkey inferotemporal neurons. PLOS Comput. Biol. 9(8), 1–21 (2013)CrossRefGoogle Scholar
  2. 2.
    DiCarlo, J.J., Cox, D.D.: Untangling invariant object recognition. Trends Cogn. Sci. 11(8), 333–341 (2007)CrossRefGoogle Scholar
  3. 3.
    DiCarlo, J.J., Zoccolan, D., Rust, N.C.: How does the brain solve visual object recognition? Neuron 73(3), 415–434 (2012)CrossRefGoogle Scholar
  4. 4.
    Dietterich, T.G., Bakiri, G.: Solving multiclass learning problems via error-correcting output codes. J. Artif. Intell. Res. 2, 263–286 (1994)CrossRefGoogle Scholar
  5. 5.
    Dodero, L., Vascon, S., Giancardo, L., Gozzi, A., Sona, D., Murino, V.: Automatic white matter fiber clustering using dominant sets. In: 2013 International Workshop on Pattern Recognition in Neuroimaging, pp. 216–219, June 2013Google Scholar
  6. 6.
    Dodero, L., Vascon, S., Murino, V., Bifone, A., Gozzi, A., Sona, D.: Automated multi-subject fiber clustering of mouse brain using dominant sets. Front. Neuroinform. 8, 87 (2015)CrossRefGoogle Scholar
  7. 7.
    Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters a density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, KDD 1996, pp. 226–231. AAAI Press (1996)Google Scholar
  8. 8.
    Glickfeld, L.L., Olsen, S.R.: Higher-order areas of the mouse visual cortex. Ann. Rev. Vis. Sci. 3(1), 251–273 (2017)CrossRefGoogle Scholar
  9. 9.
    Glickfeld, L.L., Reid, R.C., Andermann, M.L.: A mouse model of higher visual cortical function. Curr. Opin. Neurobiol. 24, 28–33 (2014)CrossRefGoogle Scholar
  10. 10.
    Huberman, A.D., Niell, C.M.: What can mice tell us about how vision works? Trends Neurosci. 34(9), 464–473 (2011)CrossRefGoogle Scholar
  11. 11.
    Kaufman, L., Rousseeuw, P.: Clustering by means of medoids. In: Statistical Data Analysis Based on the L1 Norm and Related Methods, pp. 405–416. North-Holland, Amsterdam (1987)Google Scholar
  12. 12.
    Kiani, R., Esteky, H., Mirpour, K., Tanaka, K.: Object category structure in response patterns of neuronal population in monkey inferior temporal cortex. J. Neurophysiol. 97(6), 4296–4309 (2007)CrossRefGoogle Scholar
  13. 13.
    van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008)zbMATHGoogle Scholar
  14. 14.
    MacQueen, J.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Statistics, pp. 281–297. University of California Press, Berkeley (1967)Google Scholar
  15. 15.
    Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval. Cambridge University Press, New York (2008)CrossRefGoogle Scholar
  16. 16.
    Pavan, M., Pelillo, M.: Dominant sets and pairwise clustering. IEEE Trans. Pattern Anal. Mach. Intell. 29(1), 167–172 (2007)CrossRefGoogle Scholar
  17. 17.
    Pennacchietti, F., et al.: Nanoscale molecular reorganization of the inhibitory postsynaptic density is a determinant of GABAergic synaptic potentiation. J. Neurosci. 37, 1747–1756 (2017)CrossRefGoogle Scholar
  18. 18.
    Rossant, C., et al.: Spike sorting for large, dense electrode arrays. Nat. Neurosci. 19(4), 634–641 (2016)CrossRefGoogle Scholar
  19. 19.
    Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987)CrossRefGoogle Scholar
  20. 20.
    Sereno, M.I., Allman, J.: Cortical visual areas in mammals. Neural Basis Vis. Funct. 4, 160–172 (1991)Google Scholar
  21. 21.
    Tafazoli, S., et al.: Emergence of transformation-tolerant representations of visual objects in rat lateral extrastriate cortex. eLife 6, 1–39 (2017)CrossRefGoogle Scholar
  22. 22.
    Vermaercke, B., Gerich, F.J., Ytebrouck, E., Arckens, L., Op de Beeck, H.P., Van den Bergh, G.: Functional specialization in rat occipital and temporal visual cortex. J. Neurophysiol. 112(8), 1963–1983 (2014)CrossRefGoogle Scholar
  23. 23.
    Zoccolan, D.: Invariant visual object recognition and shape processing in rats. Behav. Brain Res. 285, 10–33 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.DAISCa’ Foscari University of VeniceMestreItaly
  2. 2.ECLTCa’ Foscari University of VeniceVeniceItaly
  3. 3.Visual Neuroscience LabInternational School for Advanced Studies (SISSA)TriesteItaly

Personalised recommendations