Advertisement

Convolutional Neural Network for Trajectory Prediction

  • Nishant NikhilEmail author
  • Brendan Tran MorrisEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11131)

Abstract

Predicting trajectories of pedestrians is quintessential for autonomous robots which share the same environment with humans. In order to effectively and safely interact with humans, trajectory prediction needs to be both precise and computationally efficient. In this work, we propose a convolutional neural network (CNN) based human trajectory prediction approach. Unlike more recent LSTM-based moles which attend sequentially to each frame, our model supports increased parallelism and effective temporal representation. The proposed compact CNN model is faster than the current approaches yet still yields competitive results.

Keywords

Convolutional neural network Trajectory prediction Anticipating human behavior 

References

  1. 1.
    Antonini, G., Bierlaire, M., Weber, M.: Discrete choice models of pedestrian walking behavior. Transp. Res. Part B: Methodol. 40(8), 667–687 (2006)CrossRefGoogle Scholar
  2. 2.
    Helbing, D., Molnar, P.: Social force model for pedestrian dynamics. Phys. Rev. E 51, 4282–4286 (1998)CrossRefGoogle Scholar
  3. 3.
    Yamaguchi, K., Berg, A.C., Ortiz, L.E., Berg, T.L.: Who are you with and where are you going? In: CVPR 2011, pp. 1345–1352 (2011)Google Scholar
  4. 4.
    Gupta, A., Johnson, J., Fei-Fei, L., Savarese, S., Alahi, A.: Social GAN: socially acceptable trajectories with generative adversarial networks. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Number CONF (2018)Google Scholar
  5. 5.
    Alahi, A., Goel, K., Ramanathan, V., Robicquet, A., Fei-Fei, L., Savarese, S.: Social LSTM: human trajectory prediction in crowded spaces. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016Google Scholar
  6. 6.
    Sadeghian, A., Kosaraju, V., Sadeghian, A., Hirose, N., Savarese, S.: SoPhie: an attentive GAN for predicting paths compliant to social and physical constraints. arXiv preprint arXiv:1806.01482 (2018)
  7. 7.
    Fernando, T., Denman, S., Sridharan, S., Fookes, C.: Soft + hardwired attention: an LSTM framework for human trajectory prediction and abnormal event detection. CoRR abs/1702.05552 (2017)Google Scholar
  8. 8.
    Mikolov, T., Karafiát, M., Burget, L., Černockỳ, J., Khudanpur, S.: Recurrent neural network based language model. In: Eleventh Annual Conference of the International Speech Communication Association (2010)Google Scholar
  9. 9.
    Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)CrossRefGoogle Scholar
  10. 10.
    Bai, S., Kolter, J.Z., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. CoRR abs/1803.01271 (2018)Google Scholar
  11. 11.
    Gehring, J., Auli, M., Grangier, D., Yarats, D., Dauphin, Y.N.: Convolutional sequence to sequence learning. CoRR abs/1705.03122 (2017)Google Scholar
  12. 12.
    Vaswani, A., et al.: Attention is all you need. CoRR abs/1706.03762 (2017)Google Scholar
  13. 13.
    van den Oord, A., Kalchbrenner, N., Vinyals, O., Espeholt, L., Graves, A., Kavukcuoglu, K.: Conditional image generation with PixelCNN decoders. In: Proceedings of the 30th International Conference on Neural Information Processing Systems. NIPS 2016, USA, pp. 4797–4805. Curran Associates Inc. (2016)Google Scholar
  14. 14.
    Aneja, J., Deshpande, A., Schwing, A.: Convolutional image captioning. In: Computer Vision and Pattern Recognition (2018)Google Scholar
  15. 15.
    Deo, N., Trivedi, M.M.: Convolutional social pooling for vehicle trajectory prediction. CoRR abs/1805.06771 (2018)Google Scholar
  16. 16.
    Xue, H., Huynh, D.Q., Reynolds, M.: SS-LSTM: a hierarchical LSTM model for pedestrian trajectory prediction. In: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1186–1194, March 2018Google Scholar
  17. 17.
    Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. CoRR abs/1412.6980 (2014)Google Scholar
  18. 18.
    Pellegrini, S., Ess, A., Van Gool, L.: Improving data association by joint modeling of pedestrian trajectories and groupings. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6311, pp. 452–465. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-15549-9_33CrossRefGoogle Scholar
  19. 19.
    Leal-Taixé, L., Fenzi, M., Kuznetsova, A., Rosenhahn, B., Savarese, S.: Learning an image-based motion context for multiple people tracking. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2014)Google Scholar
  20. 20.
    Lee, N., Choi, W., Vernaza, P., Choy, C.B., Torr, P.H.S., Chandraker, M.K.: DESIRE: distant future prediction in dynamic scenes with interacting agents. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2165–2174 (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Indian Institute of Technology KharagpurKharagpurIndia
  2. 2.University of NevadaLas VegasUSA

Personalised recommendations