Deep Learning for Automated Tagging of Fashion Images

  • Patricia GutierrezEmail author
  • Pierre-Antoine Sondag
  • Petar Butkovic
  • Mauro Lacy
  • Jordi Berges
  • Felipe Bertrand
  • Arne Knudson
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11131)


We present 9 deep learning classifiers to predict Fashion attributes in 4 different categories: apparel (dresses and tops), shoes, watches and luggages. Our prediction system hosts several classifiers working at scale to populate a catalogue of millions of products. We provide details of our models as well as the challenges involved in predicting Fashion attributes in a relatively homogeneous problem space.


Deep learning Image recognition Fashion attributes 


  1. 1.
    Bendale, A., Boult, T.E.: Towards open set deep networks. CoRR abs/1511.06233 (2015)Google Scholar
  2. 2.
    Goodfellow, I., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. In: International Conference on Learning Representations (2015).
  3. 3.
    Guo, C., Pleiss, G., Sun, Y., Weinberger, K.Q.: On calibration of modern neural networks. In: ICML 2017 (2017)Google Scholar
  4. 4.
    He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016)Google Scholar
  5. 5.
    Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: CVPR 2009 (2009)Google Scholar
  6. 6.
    Johnson, J., Li, F.F., Karpathy, A.: Stanford cs231n: convolutional neural networks for visual recognition lectures (2016)Google Scholar
  7. 7.
    Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 25, pp. 1097–1105. Curran Associates, Inc. (2012).
  8. 8.
    Kurakin, A., Goodfellow, I.J., Bengio, S.: Adversarial examples in the physical world. CoRR abs/1607.02533 (2016)Google Scholar
  9. 9.
    van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008).
  10. 10.
    Sharif, M., Bhagavatula, S., Bauer, L., Reiter, M.K.: Accessorize to a crime: real and stealthy attacks on state-of-the-art face recognition. In: ACM Conference on Computer and Communications Security, pp. 1528–1540 (2016)Google Scholar
  11. 11.
    Moosavi-Dezfooli, S., Fawzi, A., Fawzi, O., Frossard, P.: Universal adversarial perturbations. CoRR abs/1610.08401 (2016)Google Scholar
  12. 12.
    Nguyen, A.M., Yosinski, J., Clune, J.: Deep neural networks are easily fooled: high confidence predictions for unrecognizable images. In: CVPR, pp. 427–436. IEEE Computer Society (2015)Google Scholar
  13. 13.
    Pereyra, G., Tucker, G., Chorowski, J., Kaiser, L., Hinton, G.E.: Regularizing neural networks by penalizing confident output distributions. CoRR abs/1701.06548 (2017)Google Scholar
  14. 14.
    Subramanya, A., Srinivas, S., Babu, R.V.: Confidence estimation in deep neural networks via density modelling. CoRR abs/1707.07013 (2017)Google Scholar
  15. 15.
    Szegedy, C., et al.: Going deeper with convolutions. In: Computer Vision and Pattern Recognition (CVPR) (2015).
  16. 16.
    Szegedy, C., et al.: Intriguing properties of neural networks. CoRR abs/1312.6199 (2013)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Patricia Gutierrez
    • 1
    Email author
  • Pierre-Antoine Sondag
    • 1
  • Petar Butkovic
    • 1
  • Mauro Lacy
    • 1
  • Jordi Berges
    • 1
  • Felipe Bertrand
    • 1
  • Arne Knudson
    • 1
  1. 1.Amazon.comSeattleUSA

Personalised recommendations