The Filum Terminale

  • Erfanul Saker
  • Charlotte Wilson
  • R. Shane TubbsEmail author


The filum terminale has often been overlooked in the literature due to its historical lack of research on its true morphology. It is only recently that the true anatomy and pathological involvement of the filum terminale in the tethered cord syndrome have been elucidated.

Herein, we present a comprehensive review of the filum terminale, including its embryology, anatomy, and associated syndromes and disorders.


Anatomy Spine Spinal cord Tethered cord syndrome 


  1. 1.
    Choi BH, et al. The ventriculus terminalis and filum terminale of the human spinal cord. Hum Pathol. 1992;23(8):916–20.PubMedGoogle Scholar
  2. 2.
    Rizk E, et al. Duplicated filum terminale in the absence of split cord malformation: a potential cause of failed detethering procedures. Childs Nerv Syst. 2014;30(4):709–11.PubMedGoogle Scholar
  3. 3.
    Suh SH, et al. Ventriculus terminalis in adults: unusual magnetic resonance imaging features and review of the literature. Korean J Radiol. 2012;13(5):557–63.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Tubbs RS, et al. The filum terminale externum. J Neurosurg Spine. 2005;3(2):149–52.PubMedGoogle Scholar
  5. 5.
    Fuchs A. Ueber Beziehungen der Enuresis nocturna zu Rudimentärformen der Spina bifida occulta (Myelodysplasie). Wien Med Wochenschr. 1910;80:1569–73.Google Scholar
  6. 6.
    Lew SM, Kothbauer KF. Tethered cord syndrome: an updated review. Pediatr Neurosurg. 2007;43(3):236–48.PubMedGoogle Scholar
  7. 7.
    Yamada S. Tethered cord syndrome. Illinois: AANS; 1996.Google Scholar
  8. 8.
    Kunitomo K. The development and reduction of the tail and of the caudal end of the spinal cord in the human embryo. In:Contributions to embryology: Carnegie Institution of Washington, DC; 1918.Google Scholar
  9. 9.
    Streeter G. Factors involved in the formation of the filum terminale. Am J Anat. 1919;25:1–11.Google Scholar
  10. 10.
    Lichtenstein B. Spinal dysraphism: spina bifida and myelodysplasia. Arch Neurol Psychiatr. 1940;44(4):792–809.Google Scholar
  11. 11.
    Jones PH, Love JG. Tight filum terminale. AMA Arch Surg. 1956;73(4):556–66.PubMedGoogle Scholar
  12. 12.
    Lichtenstein B. Distant neuroanatomic complications of spina bifida (spinal dysraphism): hydrocephalus, Arnold-Chiari deformity, stenosis of aqueduct of Sylvius, etc.; pathogenesis and pathology. Arch Neurol Psychiatr. 1942;47(2):195–214.Google Scholar
  13. 13.
    Parker H, McConnell A. Internal hydrocephalus: resulting from peculiar deformity of hind-brain. Tr Am Neurol A. 1937;63:14–5.Google Scholar
  14. 14.
    Bassett R. The neurologic deficit associated with lipomas of the cauda equine. Ann Surg. 1950;131(1):109–16.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Rogers HM, et al. Lipomas of the spinal cord and cauda equina. J Neurosurg. 1971;34(3):349–54.PubMedGoogle Scholar
  16. 16.
    Garceau G. The film terminale syndrome (the cord-traction syndrome). J Bone Joint Surg. 1953;35:711–6.PubMedGoogle Scholar
  17. 17.
    James C, Lassman L. The diagnosis and treatment of progressive lesions in spina bifida occulta. J Bone Joint Surg. 1962;73(4):556–66.Google Scholar
  18. 18.
    Selçuki M, Coşkun K. Management of tight filum terminale syndrome with special emphasis on normal level conus medullaris (NLCM). Surg Neurol. 1998;50(4):318–22; discussion 322PubMedGoogle Scholar
  19. 19.
    Moore K, Persaud T. The developing human: clinically oriented embryology. Philadelphia: Pennsylvania Elsevier Saunders; 2003.Google Scholar
  20. 20.
    Hertzler DA, et al. Tethered cord syndrome: a review of the literature from embryology to adult presentation. Neurosurg Focus. 2010;29(1):E1.PubMedGoogle Scholar
  21. 21.
    Larsen W. Human embryology. New York: Churchill Livingstone; 2001.Google Scholar
  22. 22.
    Dias M, McLone D. Normal and abnormal early development of the nervous system. In:Pediatric neurosurgery: surgery of the developing nervous system. Philadelphia: WB Saunders; 2001.Google Scholar
  23. 23.
    Hill MA. Paper – factors involved in the formation of the filum terminale. 2017. Available from:
  24. 24.
    Standring S. Gray’s anatomy: the anatomical basis of clinical practice. 41st ed. New York: Elsevier; 2016.Google Scholar
  25. 25.
    Tarlov IM. Structure of the filum terminale. Arch Neurol Psychiatr. 1938;40(1):1–17.Google Scholar
  26. 26.
    Sigal R, et al. Ventriculus terminalis of the conus medullaris: MR imaging in four patients with congenital dilatation. AJNR Am J Neuroradiol. 1991;12(4):733–7.PubMedGoogle Scholar
  27. 27.
    Gaddam SS, et al. Gross and microscopic study of the filum terminale: does the filum contain functional neural elements? J Neurosurg Pediatr. 2012;9(1):86–92.PubMedGoogle Scholar
  28. 28.
    Cramer G, Darby S. Basic and clinical anatomy of the spine, spinal cord, and ANS. Missouri: Elsevier Mosby; 2005.Google Scholar
  29. 29.
    Fontes RB, et al. Ultrastructural study of the filum terminale and its elastic fibers. Neurosurgery. 2006;58(5):978–84; discussion 978–84PubMedGoogle Scholar
  30. 30.
    Gray H. Anatomy of the human body. Philadelphia: Lea and Febiger; 1918.Google Scholar
  31. 31.
    Adeeb N, et al. The pia mater: a comprehensive review of literature. Childs Nerv Syst. 2013;29(10):1803–10.PubMedGoogle Scholar
  32. 32.
    De Vloo P, et al. The filum terminale: a cadaver study of anatomy, histology, and elastic properties. World Neurosurg. 2016;90:565–573.e1.PubMedGoogle Scholar
  33. 33.
    Harmeier J. The normal histology of the intradural filum terminale. Arch Neurol Psychiatr. 1933;29:308–16.Google Scholar
  34. 34.
    Bale PM. Sacrococcygeal developmental abnormalities and tumors in children. Perspect Pediatr Pathol. 1984;8(1):9–56.PubMedGoogle Scholar
  35. 35.
    Saifuddin A, Burnett SJ, White J. The variation of position of the conus medullaris in an adult population. A magnetic resonance imaging study. Spine (Phila Pa 1976). 1998;23(13):1452–6.Google Scholar
  36. 36.
    Barson AJ. The vertebral level of termination of the spinal cord during normal and abnormal development. J Anat. 1970;106(Pt 3):489–97.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Rostamzadeh A, Naleini F, Rostamzadeh O. Variations in position of conus medullaris in adult patients. Zahedan J Res Med Sci. 2016;18(3):e6273.Google Scholar
  38. 38.
    Warder DE, Oakes WJ. Tethered cord syndrome: the low-lying and normally positioned conus. Neurosurgery. 1994;34(4):597–600; discussion 600PubMedGoogle Scholar
  39. 39.
    Pinto FC, et al. Anatomic study of the filum terminale and its correlations with the tethered cord syndrome. Neurosurgery. 2002;51(3):725–9; discussion 729–30PubMedGoogle Scholar
  40. 40.
    Hansasuta A, Tubbs RS, Oakes WJ. Filum terminale fusion and dural sac termination: study in 27 cadavers. Pediatr Neurosurg. 1999;30(4):176–9.PubMedGoogle Scholar
  41. 41.
    Yamada S, Zinke DE, Sanders D. Pathophysiology of “tethered cord syndrome”. J Neurosurg. 1981;54(4):494–503.PubMedGoogle Scholar
  42. 42.
    Holtzman R, Stein B. The tethered spinal cord. New York: Thieme-Stratton; 1985.Google Scholar
  43. 43.
    McLendon RE, et al. Adipose tissue in the filum terminale: a computed tomographic finding that may indicate tethering of the spinal cord. Neurosurgery. 1988;22(5):873–6.PubMedGoogle Scholar
  44. 44.
    Usami K, et al. Spinal lipoma of the filum terminale: review of 174 consecutive patients. Childs Nerv Syst. 2016;32(7):1265–72.PubMedGoogle Scholar
  45. 45.
    Pang D, Dias MS, Ahab-Barmada M. Split cord malformation: part I: a unified theory of embryogenesis for double spinal cord malformations. Neurosurgery. 1992;31(3):451–80.PubMedGoogle Scholar
  46. 46.
    Mahapatra AK, Gupta DK. Split cord malformations: a clinical study of 254 patients and a proposal for a new clinical-imaging classification. J Neurosurg. 2005;103(6 Suppl):531–6.PubMedGoogle Scholar
  47. 47.
    Masahito P, Ishikawa T, Sugano H. Fish tumors and their importance in cancer research. Jpn J Cancer Res. 1988;79(5):545–55.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Chan HS, et al. Myxopapillary ependymoma of the filum terminale and cauda equina in childhood: report of seven cases and review of the literature. Neurosurgery. 1984;14(2):204–10.PubMedGoogle Scholar
  49. 49.
    Kernohan J. Primary tumors of the spinal cord and intradural filum terminale. In:Cytology and cellular pathology of the nervous system. New York: Wilder Penfield; 1932.Google Scholar
  50. 50.
    Weber DC, et al. Long-term outcome of patients with spinal myxopapillary ependymoma: treatment results from the MD Anderson Cancer Center and institutions from the Rare Cancer Network. Neuro-Oncology. 2015;17(4):588–95.PubMedGoogle Scholar
  51. 51.
    Koeller KK, Rosenblum RS, Morrison AL. Neoplasms of the spinal cord and filum terminale: radiologic-pathologic correlation. Radiographics. 2000;20(6):1721–49.PubMedGoogle Scholar
  52. 52.
    Lucchesi KM, et al. Primary spinal myxopapillary ependymoma in the pediatric population: a study from the Surveillance, Epidemiology, and End Results (SEER) database. J Neuro-Oncol. 2016;130(1):133–40.Google Scholar
  53. 53.
    Nassar SI, Correll JW, Housepian EM. Intramedullary cystic lesions of the conus medullaris. J Neurol Neurosurg Psychiatry. 1968;31(2):106–9.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Gryspeerdt GL. Myelographic assessment of occult forms of spinal dysraphism. Acta Radiol Diagn (Stockh). 1963;1:702–17.Google Scholar
  55. 55.
    Yundt KD, Park TS, Kaufman BA. Normal diameter of filum terminale in children: in vivo measurement. Pediatr Neurosurg. 1997;27(5):257–9.PubMedGoogle Scholar
  56. 56.
    Righi A, Naidich T. The normal termination of the thecal sac. Int J Neuroradiol. 1996;2(2):188–95.Google Scholar
  57. 57.
    Trotter M. Variations of the sacral canal; their significance in the administration of caudal analgesia. Curr Res Anesth Analg. 1947;26(5):192–202.PubMedGoogle Scholar
  58. 58.
    Di X. Endoscopic spinal tethered cord release: operative technique. Childs Nerv Syst. 2009;25(5):577–81.PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Erfanul Saker
    • 1
  • Charlotte Wilson
    • 2
  • R. Shane Tubbs
    • 3
    Email author
  1. 1.Elmhurst HospitalMount Sinai Health SystemElmhurstUSA
  2. 2.Department of Cell and Developmental BiologyUniversity of Colorado Anschutz Medical CampusDenverUSA
  3. 3.Seattle Science FoundationSeattleUSA

Personalised recommendations