Skip to main content

Lignocellulosic Thermochemical Pretreatment Processes

  • Chapter
  • First Online:
Biorefinery

Abstract

Lignocellulosic biomass shows an enormous potential for being a biorefinery substrate, as it is complex, abundant, accessible, and inexpensive. Its complex structure is both an advantage providing an opportunity to produce energy and value-added chemicals and a disadvantage creating a need for additional pretreatment processing. Many pretreatment methods have been developed within the last century, and some of them have been significantly improved over the last decade. The most promising methods of lignocellulosic biomass pretreatment are hydrothermal treatment and organosolv fractionation, as these are the only thermochemical processes with proven commercial and environmental feasibility, still operating to this day. Therefore, these two processes have been discussed in this chapter to demonstrate the mechanisms of lignocellulose pretreatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdullah, B., Muhammad, S. A. F. A. S., & Mahmood, N. A. N. (2017). Production of biofuel via hydrogenation of lignin from biomass. In New Advances in Hydrogenation Processes-Fundamentals and Applications. InTech. https://doi.org/10.5772/66108

    Google Scholar 

  • Aita GM, Kim M (2010) Pretreatment technologies for the conversion of lignocellulosic materials to bioethanol. In: Eggleston G (ed) Sustainability of the sugar and sugar ethanol industries. American Chemical Society, Washington, p 117

    Chapter  Google Scholar 

  • Akiya N, Savage PE (2002) Roles of water for chemical reactions in high-temperature water. Chem Rev 102:2725

    Article  Google Scholar 

  • Alvira P, Tomas-Pejo E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101:4851

    Article  Google Scholar 

  • Anastas PT, Warner JC (2000) Green chemistry: theory and practice. Oxford University Press, New York

    Google Scholar 

  • Antal MJ Jr, Mok WS, Richards GN (1990) Mechanism of formation of 5-(hydroxymethyl)-2-furaldehyde from D-fructose and sucrose. Carbohydr Res 199:91

    Article  Google Scholar 

  • Arato C, Pye EK, Gjennestad G (2005) The lignol approach to biorefining of woody biomass to produce ethanol and chemicals. In: Davison BH, Evans BR, Finkelstein M, McMillan JD (eds) Twenty-sixth symposium on biotechnology for fuels and chemicals. Humana Press, New York, p 871

    Chapter  Google Scholar 

  • Baierl, S., Young, K. W., Young, R. A., & Timothy, R. (1987). Process for digesting lignocellulosic material. Biodyne Chemicals, Inc. European Patent Application. Appl. number EP19860305606.

    Google Scholar 

  • Cara C, Romero I, Oliva JM, Sáez F, Castro E (2007) Liquid hot water pretreatment of olive tree pruning residues. In: Mielenz JR, Klasson KT, Adney WS, McMillan JD (eds) Applied biochemistry and biotechnology. Humana Press, New York, p 379

    Chapter  Google Scholar 

  • Carvalheiro F, Duarte LC, Gírio FM (2008) Hemicellulose biorefineries: a review on biomass pretreatments. J Sci Ind Res 67:849

    Google Scholar 

  • Carvalheiro F, Silva-Fernandes T, Duarte LC, Girio FM (2009) Wheat straw autohydrolysis: process optimization and products characterization. Appl Biochem Biotechnol 153:84

    Article  Google Scholar 

  • Chandra R, Bura R, Mabee W, Berlin A, Pan X, Saddler J (2007) Substrate pretreatment: the key to effective enzymatic hydrolysis of lignocellulosics? In: Olsson L (ed) Biofuels. Springer, Berlin/Heidelberg, p 67

    Chapter  Google Scholar 

  • Chang M, Chou T, Tsao G (1981) Structure, pretreatment and hydrolysis of cellulose. In: Bioenergy. Springer, Berlin/Heidelberg, p 15

    Chapter  Google Scholar 

  • Chen X, Lawoko M, van Heiningen A (2010) Kinetics and mechanism of autohydrolysis of hardwoods. Bioresour Technol 101:7812

    Article  Google Scholar 

  • Chheda JN, Huber GW, Dumesic JA (2007) Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals. Angew Chem Int Ed 46:7164

    Article  Google Scholar 

  • Cybulska I, Lei H, Julson J (2009) Hydrothermal pretreatment and enzymatic hydrolysis of prairie cord grass. Energy Fuel 24:718

    Article  Google Scholar 

  • Cybulska I, Brudecki GP, Zembrzuska J, Schmidt JE, Lopez CG-B, Thomsen MH (2017) Organosolv delignification of agricultural residues (date palm fronds, Phoenix dactylifera L.) of the United Arab Emirates. Appl Energy 185:1040

    Article  Google Scholar 

  • Fang C, Schmidt JE, Cybulska I, Brudecki GP, Frankær CG, Thomsen MH (2015) Hydrothermal pretreatment of date palm (Phoenix dactylifera L.) leaflets and rachis to enhance enzymatic digestibility and bioethanol potential. BioMed Res Int 2015:216454

    Google Scholar 

  • Garrote G, Dominguez H, Parajo JC (1999) Hydrothermal processing of lignocellulosic materials. Holz Roh Werkst 57:191–202

    Article  Google Scholar 

  • Grethlein HE (1985) The effect of pore size distribution on the rate of enzymatic hydrolysis of cellulosic substrates. Nat Biotechnol 3:155

    Article  Google Scholar 

  • Klinke HB, Thomsen AB, Ahring BK (2004) Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl Microbiol Biotechnol 66:10

    Article  Google Scholar 

  • Kohlmann K, Westgate P, Weil J, Ladisch MR (1993) Biological based systems for waste processing. In: ICES meeting

    Google Scholar 

  • Kosarie N, Sukan-Vardar F, Pieper HJ, Senn T (2001) The biotechnology of ethanol. Classical and future applications. Wiley-VCH Verlag GmbH, Wien

    Google Scholar 

  • Ladisch MR, Lin KW, Voloch M, Tsao GT (1983) Process considerations in the enzymatic hydrolysis of biomass. Enzym Microb Technol 5:82

    Article  Google Scholar 

  • Larsen J, Østergaard Petersen M, Thirup L, Wen Li H, Krogh Iversen F (2008) The IBUS process—lignocellulosic bioethanol close to a commercial reality. Chem Eng Technol 31:765

    Article  Google Scholar 

  • Lee YY (2000) Enhancement of dilute-acid total-hydrolysis process for high-yield saccharification of cellulosic biomass. Department of Chemical Engineering. Auburn University, Auburn

    Book  Google Scholar 

  • Lei H, Hennessey K, Liu Y, Lin X, Wan Y, Ruan R (2008) Optimization of hydrothermal pretreatment of corn stover. In: ASABE annual international meeting, Providence

    Google Scholar 

  • Mackie KL, Brownell HH, West KL, Saddler JN (1985) Effect of sulphur dioxide and sulphuric acid on steam explosion of aspenwood. J Wood Chem Technol 5:405–425

    Article  Google Scholar 

  • Mok WSL, Antal MJ (1992) Uncatalyzed solvolysis of whole biomass hemicellulose by hot compressed liquid water. Ind Eng Chem Res 31:1157

    Article  Google Scholar 

  • Moreira L (2008) An overview of mannan structure and mannan-degrading enzyme systems. Appl Microbiol Biotechnol 79:165

    Article  Google Scholar 

  • Morjanoff PJ, Gray PP (1987) Optimization of steam explosion as a method for increasing susceptibility of sugarcane bagasse to enzymatic saccharification. Biotechnol Bioeng 29:733–741

    Article  Google Scholar 

  • Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M et al (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673

    Article  Google Scholar 

  • Negro MJ, Manzanares P, Ballesteros I, Oliva JM, Cabanas A, Ballesteros M (2003) Hydrothermal pretreatment conditions to enhance ethanol production from poplar biomass. Appl Biochem Biotechnol 105–108:87

    Article  Google Scholar 

  • Peterson AA, Vogel F, Lachance RP, Fröling M, Antal MJ Jr, Tester JW (2008) Thermochemical biofuel production in hydrothermal media: a review of sub-and supercritical water technologies. Energy Environ Sci 1:32

    Article  Google Scholar 

  • Salapa I, Katsimpouras C, Topakas E, Sidiras D (2017) Organosolv pretreatment of wheat straw for efficient ethanol production using various solvents. Biomass Bioenergy 100:10

    Article  Google Scholar 

  • Schell DJ, Farmer J, Newman M, McMillan JD (2003) Dilute-sulfuric acid pretreatment of corn stover in pilot-scale reactor: investigation of yields, kinetics, and enzymatic digestibilities of solids. Appl Biochem Biotechnol 105–108:69

    Article  Google Scholar 

  • Schutyser W, Van den Bosch S, Dijkmans J, Turner S, Meledina M, Van Tendeloo G et al (2015a) Selective nickel-catalyzed conversion of model and lignin-derived phenolic compounds to cyclohexanone-based polymer building blocks. ChemSusChem 8:1805

    Article  Google Scholar 

  • Schutyser W, Van den Bosch S, Renders T, De Boe T, Koelewijn S-F, Dewaele A et al (2015b) Influence of bio-based solvents on the catalytic reductive fractionation of birch wood. Green Chem 17:5035

    Article  Google Scholar 

  • Schutyser W, Van den Bossche G, Raaffels A, Van den Bosch S, Koelewijn S-F, Renders T et al (2016) Selective conversion of lignin-derivable 4-alkylguaiacols to 4-alkylcyclohexanols over noble and non-noble-metal catalysts. ACS Sustain Chem Eng 4:5336

    Article  Google Scholar 

  • Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11

    Article  Google Scholar 

  • Torres, A. I., Cybulska, I., Fang, C. J., Thomsen, M. H., Schmidt, J. E., & Stephanopoulos, G. (2015) A novel approach for the identification of economic opportunities within the framework of a biorefinery. Comput Aided Chem Eng 37:1175–1180. Elsevier.

    Google Scholar 

  • Van den Bosch S, Schutyser W, Vanholme R, Driessen T, Koelewijn S-F, Renders T et al (2015) Reductive lignocellulose fractionation into soluble lignin-derived phenolic monomers and dimers and processable carbohydrate pulps. Energy Environ Sci 8:1748

    Article  Google Scholar 

  • Van den Bosch S, Renders T, Kennis S, Koelewijn S-F, Van den Bossche G, Vangeel T et al (2017) Integrating lignin valorization and bio-ethanol production: on the role of Ni-Al 2 O 3 catalyst pellets during lignin-first fractionation. Green Chem 19:3313

    Article  Google Scholar 

  • Verboekend D, Liao Y, Schutyser W, Sels BF (2016) Alkylphenols to phenol and olefins by zeolite catalysis: a pathway to valorize raw and fossilized lignocellulose. Green Chem 18:297

    Article  Google Scholar 

  • Vinardell MP, Mitjans M (2017) Lignins and their derivatives with beneficial effects on human health. Int J Mol Sci 18:1219

    Article  Google Scholar 

  • Walch E, Zemann A, Schinner F, Bonn G, Bobleter O (1992) Enzymatic saccharification of hemicellulose obtained from hydrothermally pretreated sugar cane bagasse and beech bark. Bioresour Technol 39:173

    Article  Google Scholar 

  • Weil J, Sarikaya A, Rau SL, Goetz J, Ladisch CM, Brewer M et al (1997) Pretreatment of yellow poplar sawdust by pressure cooking in water. Appl Biochem Biotechnol 68:21

    Article  Google Scholar 

  • Weil J, Sarikaya A, Rau S-L, Goetz J, Ladisch C, Brewer M et al (1998) Pretreatment of corn fiber by pressure cooking in water. Appl Biochem Biotechnol 73:1

    Article  Google Scholar 

  • Wyman CE (1996) Handbook on bioethanol. Production and utilization. Taylor & Francis, Washington

    Google Scholar 

  • Young RA (1998) Environmentally friendly technologies for the pulp and paper industry. Wiley, New York

    Google Scholar 

  • Zhao X, Cheng K, Liu D (2009) Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Appl Microbiol Biotechnol 82:815

    Article  Google Scholar 

  • Zheng Y, Pan Z, Zhang R (2009) Overview of biomass pretreatment for cellulosic ethanol production. Int J Agric Biol Eng 2:51

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iwona Cybulska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cybulska, I., Chaturvedi, T., Thomsen, M.H. (2019). Lignocellulosic Thermochemical Pretreatment Processes. In: Bastidas-Oyanedel, JR., Schmidt, J. (eds) Biorefinery. Springer, Cham. https://doi.org/10.1007/978-3-030-10961-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10961-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10960-8

  • Online ISBN: 978-3-030-10961-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics