Skip to main content

Enzymatic Processing of Technical Lignins into Materials

  • Chapter
  • First Online:
Biorefinery

Abstract

The declining fossil-based resources dominating our industry and their processing associated with environmental pollution and climate change are shifting attention towards bio-based renewable resources as alternative industrial raw material and the use of green technologies. Among these bio-based resources, lignin, a major by-product of the pulp and paper industry, is emerging as a possible raw material with potential to replace many fossil-based chemicals and materials. However, lignin is a highly heterogeneous complex material whose physico-chemical properties depend on the source of lignocellulose material (soft or hard wood), modifications introduced during the pulping process (sulphite, sulphate, solvent or soda) and other associated impurities arising from the pulping process. In addition, lignin is characterized by strong inter- and intra-hydrogen bonding, which makes lignin immiscible in polymer blends or lignin-based materials brittle. Lignin therefore requires processing to make it a suitable raw material. Several chemical, physical and biotechnological methods are being developed to make lignin suitable for the synthesis of a variety of different products. Oxidative enzyme-based methods, especially laccases and peroxidases, are emerging as the most promising efficient green biocatalysts. This chapter highlights advances in the development of enzyme-based processes for making lignin suitable for synthesizing lignin-based materials. Unlike previous general overviews, this chapter places special emphasis on changes that enzymes introduce in different types of lignin at molecular level and the properties of the modified lignin and potential application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abou-Mansour E, Polier J, Pezet R, Tabacchi R (2010) Purification and partial characterisation of a 60 KDa laccase from Fomitiporia mediterranea. Phytopathol Mediterr 48:447–453

    Google Scholar 

  • Ansari A, Pawlik M (2007) Floatability of chalcopyrite and molybdenite in the presence of lignosulfonates. Part I. Adsorption studies. Miner Eng 20:600–608

    Article  Google Scholar 

  • Aracri E, Díaz Blanco C, Tzanov T (2014) An enzymatic approach to develop a lignin-based adhesive for wool floor coverings. Green Chem 16:2597

    Article  Google Scholar 

  • Areskogh D, Li J, Gellerstedt G, Henriksson G (2010a) Structural modification of commercial lignosulphonates through laccase catalysis and ozonolysis. Ind Crop Prod 32:458–466

    Article  Google Scholar 

  • Areskogh D, Li J, Gellerstedt G, Henriksson G (2010b) Investigation of the molecular weight increase of commercial lignosulfonates by laccase catalysis. Biomacromolecules 11:904–910

    Article  Google Scholar 

  • Areskogh D, Li J, Nousiainen P, Gellerstedt G, Sipilä J, Henriksson G (2010c) Oxidative polymerisation of models for phenolic lignin end-groups by laccase. Holzforschung 64:21–34

    Article  Google Scholar 

  • Argyropoulos DS, Jurasek L, Krištofová L, Xia Z, Sun Y, Paluš E (2002) Abundance and reactivity of dibenzodioxocins in softwood lignin. J Agric Food Chem 50(4):658–666. https://doi.org/10.1021/JF010909G

    Article  Google Scholar 

  • Bae HJ, Kim YS (1996) Degradation of lignosulfonates by simultaneous action of laccase and Mn-peroxidase. In: Biotechnology in the pulp and paper industry. ACS, New York

    Google Scholar 

  • Behling R, Valange S, Chatel G (2016) Heterogeneous catalytic oxidation for lignin valorization into valuable chemicals: what results? What limitations? What trends? Green Chem 18:1839–1854

    Article  Google Scholar 

  • Berlin A, Balakshin M (2014) Industrial lignins, analysis, properties, and applications. In: Gupta VK (ed) Bioenergy research: advances and applications. Elsevier, New York, pp 315–336

    Chapter  Google Scholar 

  • Blinkovsky AM, Dordick JS (1993) Peroxidase-catalyzed synthesis of lignin–phenol copolymers. J Polym Sci Part A Polym Chem 31:1839–1846

    Article  Google Scholar 

  • Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546

    Article  Google Scholar 

  • Bouajila J, Dole P, Joly C, Limare A (2006) Some laws of a lignin plasticization. J Appl Polym Sci 102:1445–1451

    Article  Google Scholar 

  • Bourbonnais R, Paice MG, Reid ID, Lanthier P, Yaguchi M (1995) Lignin oxidation by laccase isozymes from Trametes versicolor and role of the mediator 2,2′-azinobis(3-ethylbenzthiazoline-6-sulfonate) in kraft lignin depolymerization. Appl Environ Microbiol 61:1876–1880

    Google Scholar 

  • Call HP, Mücke I (1997) History, overview and applications of mediated lignolytic systems, especially laccase-mediator-systems (Lignozym®-process). J Biotechnol 53:163–202

    Article  Google Scholar 

  • Cannatelli MD, Ragauskas AJ (2017) Laccase-mediated synthesis of lignin-core hyperbranched copolymers. Appl Microbiol Biotechnol 101:6343–6353

    Article  Google Scholar 

  • Chandra RP, Ragauskas AJ (2008) Modification of high-lignin kraft pulps with laccase. Part 2. Xylanase-enhanced strength benefits. Biotechnol Prog 21:1302–1306

    Article  Google Scholar 

  • Chen F, Dai H, Dong X, Yang J, Zhong M (2011) Physical properties of lignin-based polypropylene blends. Polym Compos 32:1019–1025

    Article  Google Scholar 

  • Cho N-S, Shin W-S, Jeong S-W, Leonowicz A (2004) Degradation of lignosulfonate by fungal laccase with low molecular mediators. Bull Korean Chem Soc 25:1551–1554

    Article  Google Scholar 

  • Crestini C, Melone F, Sette M, Saladino R (2011) Milled wood lignin: a linear oligomer. Biomacromolecules 12:3928–3935

    Article  Google Scholar 

  • Cruz JM, Domínguez JM, Domínguez H, Parajó JC (2001) Antioxidant and antimicrobial effects of extracts from hydrolysates of lignocellulosic materials. J Agric Food Chem 49(5):2459–2464. https://doi.org/10.1021/JF001237H

    Article  Google Scholar 

  • Derkacheva OY (2013) Estimation of aromatic structure contents in hardwood lignins from ir absorption spectra. J Appl Spectrosc 80:670–676

    Article  Google Scholar 

  • Dong-jie Y, Hai-feng Z, Shao-qu X, Xiao-lei W, Xue-qing Q (2013) Sulfomethylation reactivity of alkali lignin with laccase modification. Acta Polym Sin 13:232–240

    Article  Google Scholar 

  • Duval A, Molina-Boisseau S, Chirat C (2015) Fractionation of lignosulfonates: comparison of ultrafiltration and ethanol solubility to obtain a set of fractions with distinct properties. Holzforschung 69:127–134

    Article  Google Scholar 

  • Dwivedi UN, Singh P, Pandey VP, Kumar A (2011) Structure–function relationship among bacterial, fungal and plant laccases. J Mol Catal B: Enzym 68:117–128

    Article  Google Scholar 

  • Elegir G, Daina S, Zoia L, Bestetti G, Orlandi M (2005) Laccase mediator system: oxidation of recalcitrant lignin model structures present in residual kraft lignin. Enzyme Microb Technol 37:340–346

    Article  Google Scholar 

  • Elegir G, Bussini D, Antonsson S, Lindström ME, Zoia L (2007) Laccase-initiated cross-linking of lignocellulose fibres using a ultra-filtered lignin isolated from kraft black liquor. Appl Microbiol Biotechnol 77:809–817

    Article  Google Scholar 

  • Elegir G, Kindl A, Sadocco P, Orlandi M (2008) Development of antimicrobial cellulose packaging through laccase-mediated grafting of phenolic compounds. Enzyme Microb Technol 43:84–92

    Article  Google Scholar 

  • Felby C, Pedersen LS, Nielsen BR (1997) Enhanced auto adhesion of wood fibers using phenol oxidases. Holzforschung 51:281–286

    Article  Google Scholar 

  • Fernández-Costas C, Palanti S, Sanromán MÁ, Moldes D (2017) Enzymatic grafting of kraft lignin as a wood bio-protection strategy. Part 2: effectiveness against wood destroying basidiomycetes. Effect of copper entrapment. Holzforschung 71:689–695

    Google Scholar 

  • Ferrari RP, Laurenti E, Trotta F (1999) Oxidative 4-dechlorination of 2,4,6-trichlorophenol catalyzed by horseradish peroxidase. J Biol Inorg Chem 4:232–237

    Article  Google Scholar 

  • Fiţigău IF, Peter F, Boeriu CG (2013) Oxidative polymerization of lignins by laccase in water-acetone mixture. Acta Biochim Pol 60:817–822

    Google Scholar 

  • Fiţigău IF, Boeriu CG, Peter F (2015) Enzymatic modification of different lignins through oxidative coupling with hydrophilic compounds. Macromol Symp 352:78–86

    Article  Google Scholar 

  • Fonseca MI, Fariña JI, Sadañoski MA, D’Errico R, Villalba LL, Zapata PD (2015) Decolorization of Kraft liquor effluents and biochemical characterization of laccases from Phlebia brevispora BAFC 633. Int Biodeter Biodegr 104:443–451

    Article  Google Scholar 

  • Frasconi M, Favero G, Boer H, Koivula A, Mazzei F (2010) Kinetic and biochemical properties of high and low redox potential laccases from fungal and plant origin. Biochim Biophys Acta Proteins Proteomics 1804:899–908

    Article  Google Scholar 

  • Gao G, Karaaslan MA, Kadla JF, Ko F (2014) Enzymatic synthesis of ionic responsive lignin nanofibres through surface poly(N-isopropylacrylamide) immobilization. Green Chem 16:3890–3898

    Article  Google Scholar 

  • Gillet S, Aguedo M, Petitjean L, Morais ARC, da Costa Lopes AM, Łukasik RM, Anastas PT (2017) Lignin transformations for high value applications: towards targeted modifications using green chemistry. Green Chem 19:4200–4233

    Article  Google Scholar 

  • Gillgren T, Hedenström M, Jönsson LJ (2017) Comparison of laccase-catalyzed cross-linking of organosolv lignin and lignosulfonates. Int J Biol Macromol 105:438–446

    Article  Google Scholar 

  • Gordobil O, Moriana R, Zhang L, Labidi J, Sevastyanova O (2016) Assessment of technical lignins for uses in biofuels and biomaterials: structure-related properties, proximate analysis and chemical modification. Ind Crop Prod 83:155–165

    Article  Google Scholar 

  • Gouveia S, Fernández-Costas C, Sanromán MA, Moldes D (2012) Enzymatic polymerisation and effect of fractionation of dissolved lignin from Eucalyptus globulus Kraft liquor. Bioresour Technol 121:131–138

    Article  Google Scholar 

  • Gouveia S, Fernández-Costas C, Sanromán MA, Moldes D (2013) Polymerisation of Kraft lignin from black liquors by laccase from Myceliophthora thermophila: effect of operational conditions and black liquor origin. Bioresour Technol 131:288–294

    Article  Google Scholar 

  • Grönqvist S, Viikari L, Niku ML (2005) Oxidation of milled wood lignin with laccase, tyrosinase and horseradish peroxidase. Appl Microbiol Biotechnol 67(4):489–494

    Article  Google Scholar 

  • Hataaka A, Mettala A, Toikka B, Hortling B, Brunow G (1996) Modification of lignin by laccase and manganese peroxidase. In: Biotechnology in the pulp and paper industry

    Google Scholar 

  • Hernández Fernaud JR, Carnicero A, Perestelo F, Hernández Cutuli M, Arias E, Falcón MA (2006) Upgrading of an industrial lignin by using laccase produced by Fusarium proliferatum and different laccase-mediator systems. Enzyme Microb Technol 38:40–48

    Article  Google Scholar 

  • Hu J, Zhang Q, Lee D-J (2018) Kraft lignin biorefinery: a perspective. Bioresour Technol 247:1181–1183

    Article  Google Scholar 

  • Huber D, Ortner A, Daxbacher A, Nyanhongo GS, Bauer W, Guebitz GM (2016) Influence of oxygen and mediators on laccase-catalyzed polymerization of lignosulfonate. ACS Sustain Chem Eng 4:5303–5310

    Article  Google Scholar 

  • Hulin L, Husson E, Bonnet J-P, Stevanovic T, Sarazin C (2015) Enzymatic transesterification of kraft lignin with long acyl chains in ionic liquids. Molecules 20:16334–16353

    Article  Google Scholar 

  • Humpert D, Ebrahimi M, Czermak P (2016) Membrane technology for the recovery of lignin: a review. Membranes (Basel) 6:42

    Article  Google Scholar 

  • Ibrahim V, Volkova N, Pyo S-H, Mamo G, Hatti-Kaul R (2013a) Laccase catalysed modification of lignin subunits and coupling to p-aminobenzoic acid. J Mol Catal B: Enzym 97:45–53

    Article  Google Scholar 

  • Ibrahim V, Mamo G, Gustafsson P-J, Hatti-Kaul R (2013b) Production and properties of adhesives formulated from laccase modified Kraft lignin. Ind Crop Prod 45:343–348

    Article  Google Scholar 

  • Ihssen J, Schubert M, Thöny-Meyer L, Richter M (2014) Laccase catalyzed synthesis of iodinated phenolic compounds with antifungal activity. PLoS One 9:e89924

    Article  Google Scholar 

  • Janusz G, Pawlik A, Sulej J, Świderska-Burek U, Jarosz-Wilkołazka A, Paszczyński A (2017) Lignin degradation: microorganisms, enzymes involved, genomes analysis and evolution. FEMS Microbiol Rev 41:941–962

    Article  Google Scholar 

  • Jin L, Sellers T, Schultz TP, Nicholas DD (1990) Utilization of lignin modified by brown-rot fungi. I. properties of flakeboard produced with a brown-rotted lignin modified phenolic adhesive. Holzforschung 44:207–210

    Article  Google Scholar 

  • Johansson K, Winestrand S, Johansson C, Järnström L, Jönsson LJ (2012) Oxygen-scavenging coatings and films based on lignosulfonates and laccase. J Biotechnol 161:14–18

    Article  Google Scholar 

  • Johansson K, Gillgren T, Winestrand S, Järnström L, Jönsson LJ (2014) Comparison of lignin derivatives as substrates for laccase-catalyzed scavenging of oxygen in coatings and films. J Biol Eng 8(1):1

    Article  Google Scholar 

  • Jönsson A-S, Wallberg O (2009) Cost estimates of kraft lignin recovery by ultrafiltration. Desalination 237:254–267

    Article  Google Scholar 

  • Kai D, Tan MJ, Chee PL, Chua YK, Yap YL, Loh XJ (2016) Towards lignin-based functional materials in a sustainable world. Green Chem 18:1175–1200

    Article  Google Scholar 

  • Kalliola A, Asikainen M, Talja R, Tamminen T (2014) Experiences of kraft lignin functionalization by enzymatic and chemical oxidation. BioResources 9:7336–7351

    Article  Google Scholar 

  • Kaplan DL (1979) Reactivity of different oxidases with lignins and lignin model compounds. Phytochemistry 18:1917–1919

    Article  Google Scholar 

  • Kersten PJ, Kalyanaraman B, Hammel KE, Reinhammar B, Kirk TK (1990) Comparison of lignin peroxidase, horseradish peroxidase and laccase in the oxidation of methoxybenzenes. Biochem J 268:475–480

    Article  Google Scholar 

  • Kharazipour A, Mai C, Hüttermann A (1998) Polyphenols for compounded materials. Polym Degrad Stab 59:237–243

    Article  Google Scholar 

  • Kiiskinen L-L, Kruus K, Bailey M, Ylösmäki E, Siika-aho M, Saloheimo M (2004) Expression of Melanocarpus albomyces laccase in Trichoderma reesei and characterization of the purified enzyme. Microbiology 150:3065–3074

    Article  Google Scholar 

  • Kubo S, Kadla JF (2004) Macromolecules 37:6904–6911

    Article  Google Scholar 

  • Kudanga T, Nugroho Prasetyo E, Sipilä J, Eberl A, Nyanhongo G, Guebitz G (2009) Coupling of aromatic amines onto syringylglycerol β-guaiacylether using Bacillus SF spore laccase: a model for functionalization of lignin-based materials. J Mol Catal B: Enzym 61:143–149

    Article  Google Scholar 

  • Kudanga T, Prasetyo EN, Sipilä J, Guebitz GM, Nyanhongo GS (2010a) Reactivity of long chain alkylamines to lignin moieties: Implications on hydrophobicity of lignocellulose materials. J Biotechnol 149(1–2):81–87

    Article  Google Scholar 

  • Kudanga T, Prasetyo EN, Sipilä J, Nyanhongo GS, Guebitz GM (2010c) Enzymatic grafting of functional molecules to the lignin model dibenzodioxocin and lignocellulose material. Enzyme Microb Technol 46:272–280

    Article  Google Scholar 

  • Kudanga T, Prasetyo EN, Sipilä J, Nyanhongo GS, Guebitz GM (2010d) Chemo-enzymatic functionalisation of lignocellulose materials using oxiranes. Process Biochem 45(9):1557–1562

    Article  Google Scholar 

  • Kudanga T, Prasetyo EN, Widsten P, Kandelbauer A, Jury S, Heathcote C, Sipilä J, Weber H, Nyanhongo GS, Guebitz GM (2010e) Laccase catalyzed covalent coupling of fluorophenols increases lignocellulose surface hydrophobicity. Bioresour Technol 101(8):2793–2799

    Article  Google Scholar 

  • Laurichesse S, Avérous L (2014) Chemical modification of lignins: towards biobased polymers. Prog Polym Sci 39:1266–1290

    Article  Google Scholar 

  • Li K, Xu F, Eriksson KE (1999) Comparison of fungal laccases and redox mediators in oxidation of a nonphenolic lignin model compound. Appl Environ Microbiol 65:2654–2660

    Google Scholar 

  • Lund M, Ragauskas AJ (2001) Enzymatic modification of kraft lignin through oxidative coupling with water-soluble phenols. Appl Microbiol Biotechnol 55:699–703

    Article  Google Scholar 

  • Madad N, Chebil L, Charbonnel C, Ioannou I, Ghoul M (2013) Enzymatic polymerization of sodium lignosulfonates: effect of catalysts, initial molecular weight, and mediators. Can J Chem 91:220–225

    Article  Google Scholar 

  • Mai C, Milstein O, Hüttermann A (1999) Fungal laccase grafts acrylamide onto lignin in presence of peroxides. Appl Microbiol Biotechnol 51:527–531

    Article  Google Scholar 

  • Mai C, Milstein O, Hüttermann A (2000) Chemoenzymatical grafting of acrylamide onto lignin. J Biotechnol 79:173–183

    Article  Google Scholar 

  • Maldhure AV, Chaudhari AR, Ekhe JD (2011) Thermal and structural studies of polypropylene blended with esterified industrial waste lignin. J Therm Anal Calorim 103:625–632

    Article  Google Scholar 

  • Matsumura E, Yamamoto E, Numata A, Kawano T, Shin T, Murao S (1986) Structures of the laccase-catalyzed oxidation products of hydroxybenzoic acids in the presence of ABTS (2,2′-azino-di-(3-ethylbenzothiazoline-6-sulfonic acid)). Agric Biol Chem 50:1355–1357

    Google Scholar 

  • McDonnell G, Russell AD (1999) Antiseptics and disinfectants: activity, action, and resistance. Clin Microbiol Rev 12:147–179

    Article  Google Scholar 

  • Mikolasch A, Schauer F (2009) Fungal laccases as tools for the synthesis of new hybrid molecules and biomaterials. Appl Microbiol Biotechnol 82:605–624

    Article  Google Scholar 

  • Milstein O, Hüttermann A, Fründ R, Lüdemann H-D (1994) Enzymatic co-polymerization of lignin with low-molecular mass compounds. Appl Microbiol Biotechnol 40:760–767

    Article  Google Scholar 

  • Morozova OV, Shumakovich GP, Shleev SV, Yaropolov YI (2007) Laccase-mediator systems and their applications: a review. Appl Biochem Microbiol 43:523–535

    Article  Google Scholar 

  • Mottiar Y, Vanholme R, Boerjan W, Ralph J, Mansfield SD (2016) Designer lignins: harnessing the plasticity of lignification. Curr Opin Biotechnol 37:190–200

    Article  Google Scholar 

  • Moya R, Saastamoinen P, Hernández M, Suurnäkki A, Arias E, Mattinen M-L (2011) Reactivity of bacterial and fungal laccases with lignin under alkaline conditions. Bioresour Technol 102:10006–10012

    Article  Google Scholar 

  • Munk L, Andersen ML, Meyer AS (2017a) Direct rate assessment of laccase catalysed radical formation in lignin by electron paramagnetic resonance spectroscopy. Enzyme Microb Technol 106:88–96

    Article  Google Scholar 

  • Munk L, Punt AM, Kabel MA, Meyer AS (2017b) Laccase catalyzed grafting of –N–OH type mediators to lignin via radical–radical coupling. RSC Adv 7:3358–3368

    Article  Google Scholar 

  • Muralikrishna C, Renganathan V (1993) Peroxidase-catalyzed desulfonation of 3,5-dimethyl-4-hydroxy and 3,5-dimethyl-4-aminobenzenesulfonic acids. Biochem Biophys Res Commun 197:798–804

    Article  Google Scholar 

  • Norgren M, Edlund H (2014) Lignin: recent advances and emerging applications. Curr Opin Colloid Interface Sci 19:409–416

    Article  Google Scholar 

  • Nugroho Prasetyo E, Kudanga T, Østergaard L, Rencoret J, Gutiérrez A, del Río JCJC, Ignacio Santos J, Nieto L, Jiménez-Barbero J, Martínez ATAT et al (2010) Polymerization of lignosulfonates by the laccase-HBT (1-hydroxybenzotriazole) system improves dispersibility. Bioresour Technol 101:5054–5062

    Article  Google Scholar 

  • Nyanhongo GS, Couto SR, Guebitz GM (2006) Coupling of 2,4,6-trinitrotoluene (TNT) metabolites onto humic monomers by a new laccase from Trametes modesta. Chemosphere 64(3):359–370

    Article  Google Scholar 

  • Nyanhongo GS, Kudanga T, Prasetyo EN, Guebitz GM (2010) Mechanistic insights into laccase-mediated functionalisation of lignocellulose material. Biotechnol Genet Eng Rev 27:305–330

    Article  Google Scholar 

  • Ortner A, Huber D, Haske-Cornelius O, Weber HKHK, Hofer K, Bauer W, Nyanhongo GS, Guebitz GM (2015) Laccase mediated oxidation of industrial lignins: Is oxygen limiting? Process Biochem 50:1277–1283

    Article  Google Scholar 

  • Ortner A, Hofer K, Bauer W, Nyanhongo GS, Guebitz GM (2018) Laccase modified lignosulfonates as novel binder in pigment based paper coating formulations. React Funct Polym 123:20–25

    Article  Google Scholar 

  • Ouyang XP, Zhang P, Tan CM, Deng YH, Yang DJ, Qiu XQ (2010) Isolation of lignosulfonate with low polydispersity index. Chin Chem Lett 21:1479–1481

    Article  Google Scholar 

  • Pandey VP, Awasthi M, Singh S, Tiwari S, Dwivedi UN, Dwivedi UN (2017) A comprehensive review on function and application of plant peroxidases. Biochem Anal Biochem 6:1

    Article  Google Scholar 

  • Pfaltzgraff LA, Clark JH (2014) Green chemistry, biorefineries and second generation strategies for re-use of waste: an overview. In: Waldron KW (ed) Advances in biorefineries. Woodhead Publishing, Sawston, pp 3–33

    Chapter  Google Scholar 

  • Prasetyo EN, Kudanga T, Fischer R, Eichinger R, Nyanhongo GS, Guebitz GM (2012) Enzymatic synthesis of lignin-siloxane hybrid functional polymers. Biotechnol J 7(2):284–292

    Article  Google Scholar 

  • Rittstieg K, Suurnakki A, Suortti T, Kruus K, Guebitz G, Buchert J (2002) Investigations on the laccase-catalyzed polymerization of lignin model compounds using size-exclusion HPLC. Enzyme Microb Technol 31:403–410

    Article  Google Scholar 

  • Sáez-Jiménez V, Rencoret J, Rodríguez-Carvajal MA, Gutiérrez A, Ruiz-Dueñas FJ, Martínez AT (2016) Role of surface tryptophan for peroxidase oxidation of nonphenolic lignin. Biotechnol Biofuels 9:198

    Article  Google Scholar 

  • Shogren RL, Biswas A (2013) Preparation of starch–sodium lignosulfonate graft copolymers via laccase catalysis and characterization of antioxidant activity. Carbohydr Polym 91:581–585

    Article  Google Scholar 

  • Si J, Peng F, Cui B (2013) Purification, biochemical characterization and dye decolorization capacity of an alkali-resistant and metal-tolerant laccase from Trametes pubescens. Bioresour Technol 128:49–57

    Article  Google Scholar 

  • Sivasankarapillai G, McDonald AG (2011) Synthesis and properties of lignin-highly branched poly (ester-amine) polymeric systems. Biomass Bioenergy 35:919–931

    Article  Google Scholar 

  • Stewart D (2008) Lignin as a base material for materials applications: chemistry, application and economics. Ind Crop Prod 27:202–207

    Article  Google Scholar 

  • Sun M, Hong C-Y, Pan C-Y (2012) A unique aliphatic tertiary amine chromophore: fluorescence, polymer structure, and application in cell imaging. J Am Chem Soc 134:20581–20584

    Article  Google Scholar 

  • Sun Y, Qiu X, Liu Y (2013) Chemical reactivity of alkali lignin modified with laccase. Biomass Bioenergy 55:198–204

    Article  Google Scholar 

  • Tejado A, Peña C, Labidi J, Echeverria JM, Mondragon I (2007) Physico-chemical characterization of lignins from different sources for use in phenol–formaldehyde resin synthesis. Bioresour Technol 98:1655–1663

    Article  Google Scholar 

  • Tobimatsu Y, Takano T, Kamitakahara H, Nakatsubo F (2010) Reactivity of syringyl quinone methide intermediates in dehydrogenative polymerization I: high-yield production of synthetic lignins (DHPs) in horseradish peroxidase-catalyzed polymerization of sinapyl alcohol in the presence of nucleophilic reagents. J Wood Sci 56:233–241

    Article  Google Scholar 

  • Toledano A, Serrano L, Garcia A, Mondragon I, Labidi J (2010a) Comparative study of lignin fractionation by ultrafiltration and selective precipitation. Chem Eng J 157:93–99

    Article  Google Scholar 

  • Toledano A, García A, Mondragon I, Labidi J (2010b) Lignin separation and fractionation by ultrafiltration. Sep Purif Technol 71:38–43

    Article  Google Scholar 

  • Trovaslet-Leroy M, Jolivalt C, Froment M-T, Brasme B, Lefebvre B, Daveloose D, Nachon F, Masson P (2010) Application of laccase-mediator system (LMS) for the degradation of organophosphorus compounds. Chem Biol Interact 187:393–396

    Article  Google Scholar 

  • Unbehaun H, Dittler B, Kühne G, Wagenführ A (2000) Investigation into the biotechnological modification of wood and its application in the wood-based material industry. Acta Biotechnol 20:305–312

    Article  Google Scholar 

  • van de Pas D, Hickson A, Donaldson L, Lloyd-Jones G, Tamminen T, Fernyhough A, Mattinen ML (2011) Characterization of fractionated lignins polymerized by fungal laccases. BioResources 6:1105–1121

    Google Scholar 

  • Wang Y, Chantreau M, Sibout R, Hawkins S (2013) Plant cell wall lignification and monolignol metabolism. Front Plant Sci 4:220

    Google Scholar 

  • Wang J, Feng J, Jia W, Chang S, Li S, Li Y (2015) Lignin engineering through laccase modification: a promising field for energy plant improvement. Biotechnol Biofuels 8:145

    Article  Google Scholar 

  • Weihua Q, Hongzhang C (2008) An alkali-stable enzyme with laccase activity from entophytic fungus and the enzymatic modification of alkali lignin. Bioresour Technol 99:5480–5484

    Article  Google Scholar 

  • Witayakran S, Ragauskas AJ (2009a) Modification of high-lignin softwood kraft pulp with laccase and amino acids. Enzyme Microb Technol 44:176–181

    Article  Google Scholar 

  • Witayakran S, Ragauskas AJ (2009b) Synthetic applications of laccase in green chemistry. Adv Synth Catal 351:1187–1209

    Article  Google Scholar 

  • Xu F, Kulys JJ, Duke K, Li K, Krikstopaitis K, Deussen HJ, Abbate E, Galinyte V, Schneider P (2000) Redox chemistry in laccase-catalyzed oxidation of N-hydroxy compounds. Appl Environ Microbiol 66:2052–2056

    Article  Google Scholar 

  • Yang D, Chang Y, Wu X, Qiu X, Lou H (2014a) Modification of sulfomethylated alkali lignin catalyzed by horseradish peroxidase. RSC Adv 4:53855–53863

    Article  Google Scholar 

  • Yang D, Wu X, Qiu X, Chang Y, Lou H (2014b) Polymerization reactivity of sulfomethylated alkali lignin modified with horseradish peroxidase. Bioresour Technol 155:418–421

    Article  Google Scholar 

  • Yang D, Huang W, Qiu X, Lou H, Qian Y (2017) Modifying sulfomethylated alkali lignin by horseradish peroxidase to improve the dispersibility and conductivity of polyaniline. Appl Surf Sci 426:287–293

    Article  Google Scholar 

  • Zhang Y, Dong A, Fan X, Wang Q, Zhang Y, Yu Y, Cavaco-Paulo A (2016) Laccase-catalyzed synthesis of conducting polyaniline-lignosulfonate composite. J Appl Polym Sci 133:42941

    Google Scholar 

  • Zhou H, Qiu X, Yang D, Xie S (2016) Laccase and xylanase incubation enhanced the sulfomethylation reactivity of alkali lignin. ACS Sustain Chem Eng 4:1248–1254

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gibson S. Nyanhongo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Guebitz, G.M., Pellis, A., Nyanhongo, G.S. (2019). Enzymatic Processing of Technical Lignins into Materials. In: Bastidas-Oyanedel, JR., Schmidt, J. (eds) Biorefinery. Springer, Cham. https://doi.org/10.1007/978-3-030-10961-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10961-5_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10960-8

  • Online ISBN: 978-3-030-10961-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics