Skip to main content

Bioelectrochemical Systems for the Valorization of Organic Residues

  • Chapter
  • First Online:
Biorefinery

Abstract

Bioelectrochemical systems (BES) that can be involved in the valorization of organic residues use microorganisms able to exchange electrons with an electrode. In the case of microbial fuel cells (MFC), microbial oxidation of organic substrates at the anode generates energy as electric current. In a microbial electrolysis cell, electric energy is provided so that electrons generated by microbial oxidation of organic matter at the anode allow hydrogen production at the cathode. Electrodes can also be used to control fermentation reactions in the electro-fermentation process. Other applications include the production of methane or organic molecules by microbiological carbon dioxide reduction at the cathode, i.e. microbial electrosynthesis. It is also possible to use these BES to recover nutrient from specific effluents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arends JBA, Verstraete W (2012) 100 years of microbial electricity production: three concepts for the future. Microb Biotechnol 5(3):333–346

    Article  Google Scholar 

  • Batlle-Vilanova, P, Puig S, Gonzalez-Olmos R, Vilajeliu-Pons A, Baneras L, Balaguer MD, Colprim J (2014) Assessment of biotic and abiotic graphite cathodes for hydrogen production in microbial electrolysis cells, Int J Hydrogen Energ 39:1297–1305.

    Article  Google Scholar 

  • Blasco-Gomez R, Batlle-Vilanova P, Villano M, Balaguer MD, Colprim J, Puig S (2017) On the edge of research and technological application: a critical review of electromethanogenesis. Int J Mol Sci 18(4):874. https://doi.org/10.3390/ijms18040874

    Article  Google Scholar 

  • Bouchez T, Bridier A, Le Quéméner E (2017) Method and device for controlling the activity of a bioelectrochemical system comprising both a bioanode and a biocathode. US2017218530A1

    Google Scholar 

  • Butti SK, Velvizhi G, Sulonen MLK, Haavisto JM, Koroglu EO, Cetinkaya AY, Singh S, Arya D, Modestra JA, Krishna KV, Verma A, Ozkaya B, Lakaniemi AM, Puhakka JA, Mohan SV (2016) Microbial electrochemical technologies with the perspective of harnessing bioenergy: maneuvering towards upscaling. Renew Sust Energ Rev 53:462–476

    Article  Google Scholar 

  • Call D, Logan BE (2008) Hydrogen production in a single chamber microbial electrolysis cell lacking a membrane. Environ Sci Technol 42(9):3401–3406

    Article  Google Scholar 

  • Call DF, Merrill MD, Logan BE (2009) High surface area stainless steel brushes as cathodes in microbial electrolysis cells. Environ Sci Technol 43:2179–2183

    Article  Google Scholar 

  • Cao XX, Huang X, Liang P, Xiao K, Zhou YJ, Zhang XY, Logan BE (2009) A new method for water desalination using microbial desalination cells. Environ Sci Technol 43(18):7148–7152

    Article  Google Scholar 

  • Chae KJ, Choi MJ, Lee JW, Kim KY, Kim IS (2009) Effect of different substrates on the performance, bacterial diversity, and bacterial viability in microbial fuel cells. Bioresour Technol 100(14):3518–3525

    Article  Google Scholar 

  • Cheng S, Logan BE (2007) Sustainable and efficient biohydrogen production via electrohydrogenesis. Proc Natl Acad Sci U S A 104(47):18871–18873

    Article  Google Scholar 

  • Cheng SA, Logan BE (2011) High hydrogen production rate of microbial electrolysis cell (MEC) with reduced electrode spacing. Bioresour Technol 102(3):3571–3574

    Article  Google Scholar 

  • Cheng SA, Xing DF, Call DF, Logan BE (2009) Direct biological conversion of electrical current into methane by electromethanogenesis. Environ Sci Technol 43(10):3953–3958

    Article  Google Scholar 

  • Choi O, Um Y, Sang B-I (2012) Butyrate production enhancement by Clostridium tyrobutyricum using electron mediators and a cathodic electron donor. Biotechnol Bioeng 109:2494–2502

    Article  Google Scholar 

  • Choi O, Kim T, Woo HM, Um Y (2014) Electricity-driven metabolic shift through direct electron uptake by electroactive heterotroph Clostridium pasteurianum. Sci Rep 4:6961

    Article  Google Scholar 

  • Clauwaert P, Toledo R, Van der Ha D, Crab R, Verstraete W, Hu H, Udert KM, Rabaey K (2008) Combining biocatalyzed electrolysis with anaerobic digestion. Water Sci Technol 57(4):575–579

    Article  Google Scholar 

  • Cord-Ruwisch R, Law Y, Cheng KY (2011) Ammonium as a sustainable proton shuttle in bioelectrochemical systems. Bioresour Technol 102(20):9691–9696

    Article  Google Scholar 

  • Cusick RD, Kiely PD, Logan BE (2010) A monetary comparison of energy recovered from microbial fuel cells and microbial electrolysis cells fed winery or domestic wastewaters. Int J Hydrog Energy 35(17):8855–8861

    Article  Google Scholar 

  • Cusick RD, Bryan B, Parker DS, Merrill MD, Mehanna M, Kiely PD, Liu GL, Logan BE (2011) Performance of a pilot-scale continuous flow microbial electrolysis cell fed winery wastewater. Appl Microbiol Biotechnol 89(6):2053–2063

    Article  Google Scholar 

  • Daud SM, Kim BH, Ghasemi M, Daud WRW (2015) Separators used in microbial electrochemical technologies: current status and future prospects. Bioresour Technol 195:170–179

    Article  Google Scholar 

  • De Vrieze J, Gildemyn S, Arends JBA, Vanwonterghem I, Verbeken K, Boon N, Verstraete W, Tyson GW, Hennebel T, Rabaey K (2014) Biomass retention on electrodes rather than electrical current enhances stability in anaerobic digestion. Water Res 54:211–221

    Article  Google Scholar 

  • Dennis PG, Harnisch F, Yeoh YK, Tyson GW, Rabaey K (2013) Dynamics of cathode-associated microbial communities and metabolite profiles in a glycerol-fed bioelectrochemical system. Appl Environ Microbiol 79(13):4008–4014

    Article  Google Scholar 

  • Deutzmann JS, Spormann AM (2017) Enhanced microbial electrosynthesis by using defined co-cultures. ISME J 11:704–714

    Article  Google Scholar 

  • Emde R, Schink B (1990) Enhanced propionate formation by Propionibacterium freudenreichii subsp. freudenreichii in a three-electrode amperometric culture system. Appl Environ Microbiol 56:2771–2776

    Google Scholar 

  • Escapa A, Gomez X, Tartakovsky B, Moran A (2012) Estimating microbial electrolysis cell (MEC) investment costs in wastewater treatment plants: case study. Int J Hydrog Energy 37:18641–18653

    Article  Google Scholar 

  • Fan YZ, Han SK, Liu H (2012) Improved performance of CEA microbial fuel cells with increased reactor size. Energy Environ Sci 5(8):8273–8280

    Article  Google Scholar 

  • Feng YJ, He WH, Liu J, Wang X, Qu YP, Ren NQ (2014) A horizontal plug flow and stackable pilot microbial fuel cell for municipal wastewater treatment. Bioresour Technol 156:132–138

    Article  Google Scholar 

  • Flynn JM, Ross DE, Hunt KA, Bond DR, Gralnick JA (2010) Enabling unbalanced fermentations by using engineered electrode-interfaced bacteria. MBio 1:5 e00190–5 e00110

    Article  Google Scholar 

  • Foley J, de Haas D, Hartley K, Lant P (2010) Comprehensive life cycle inventories of alternative wastewater treatment systems. Water Res 44(5):1654–1666

    Article  Google Scholar 

  • Gallardo R, Acevedo A, Quintero J, Paredes I, Conejeros R, Aroca G (2016) In silico analysis of Clostridium acetobutylicum ATCC 824 metabolic response to an external electron supply. Bioprocess Biosyst Eng 39(2):295–305

    Article  Google Scholar 

  • Geelhoed JS, Hamelers HVM, Stams AJM (2010) Electricity-mediated biological hydrogen production. Curr Opin Microbiol 13(3):307–315

    Article  Google Scholar 

  • Harrington TD, Mohamed A, Tran VN, Biria S, Gargouri M, Park J-J, Gang DR, Beyenal H (2015a) Neutral red-mediated microbial electrosynthesis by Escherichia coli, Klebsiella pneumoniae, and Zymomonas mobilis. Bioresour Technol 195:57–65

    Article  Google Scholar 

  • Harrington TD, Tran VN, Mohamed A, Renslow R, Biria S, Orfe L, Call DR, Beyenal H (2015b) The mechanism of neutral red-mediated microbial electrosynthesis in Escherichia coli: menaquinone reduction. Bioresour Technol 192:689–695

    Article  Google Scholar 

  • Heidrich ES, Dolfing J, Scott K, Edwards SR, Jones C, Curtis TP (2013) Production of hydrogen from domestic wastewater in a pilot-scale microbial electrolysis cell. Appl Microbiol Biotechnol 97:6979–6989

    Article  Google Scholar 

  • Hiegemann H, Herzer D, Nettmann E, Lübken M, Schulte P, Schmelz K-G, Gredigk-Hoffmann S, Wichern M (2016) An integrated 45L pilot microbial fuel cell system at a full-scale wastewater treatment plant. Bioresour Technol 218:115–122

    Article  Google Scholar 

  • Hiegemann H, Lübken M, Schulte P, Schmelz K-G, Gredigk-Hoffmann S, Wichern M (2018) Inhibition of microbial fuel cell operation for municipal wastewater treatment by impact loads of free ammonia in bench- and 45L-scale. Sci Total Environ 624:34–39

    Article  Google Scholar 

  • Hu HQ, Fan YZ, Liu H (2008) Hydrogen production using single-chamber membrane-free microbial electrolysis cells. Water Res 42:4172–4178

    Article  Google Scholar 

  • Hu H, Fan Y, Liu H (2009) Hydrogen production in single-chamber tubular microbial electrolysis cells using non-precious-metal catalysts. Int J Hydrog Energy 34:8535–8542

    Article  Google Scholar 

  • Jeremiasse AW, Hamelers EVM, Buisman CJN (2010) Microbial electrolysis cell with a microbial biocathode. Bioelectrochemistry 78:39–43

    Article  Google Scholar 

  • Jeremiasse AW, Hamelers HVM, Croese E, Buisman CJN (2012) Acetate enhances startup of a H2-producing microbial biocathode. Biotechnol Bioeng 109:657–664

    Article  Google Scholar 

  • Jourdin L, Raes SMT, Buisman CJN, Strik DPBTB (2018) Critical biofilm growth throughout unmodified carbon felts allows continuous bioelectrochemical chain elongation from CO2 up to caproate at high current density. Front Energy Res 6:7. https://doi.org/10.3389/fenrg.2018.00007

    Article  Google Scholar 

  • Kim TS, Kim BH (1988) Electron flow shift in Clostridium acetobutylicum fermentation by electrochemically introduced reducing equivalent. Biotechnol Lett 10:123–128

    Article  Google Scholar 

  • Koch C, Harnisch F (2016) Is there a specific ecological niche for electroactive microorganisms? ChemElectroChem 3:1282–1295

    Article  Google Scholar 

  • Kokko M, Epple S, Gescher J, Kerzenmacher S (2018) Effects of wastewater constituents and operational conditions on the composition and dynamics of anodic microbial communities in bioelectrochemical systems. Bioresour Technol 258:376–389

    Article  Google Scholar 

  • Kracke F, Krömer JO (2014) Identifying target processes for microbial electrosynthesis by elementary mode analysis. BMC Bioinformatics 15(1):410

    Article  Google Scholar 

  • Kracke F, Virdis B, Bernhardt PV, Rabaey K, Krömer JO (2016) Redox dependent metabolic shift in Clostridium autoethanogenum by extracellular electron supply. Biotechnol Biofuels 9(1):249

    Article  Google Scholar 

  • Kundu A, Sahu JN, Redzwan G, Hashim MA (2013) An overview of cathode material and catalysts suitable for generating hydrogen in microbial electrolysis cell. Int J Hydrog Energy 38(4):1745–1757

    Article  Google Scholar 

  • Kuntke P, Geleji M, Bruning H, Zeeman G, Hamelers HVM, Buisman CJN (2011) Effects of ammonium concentration and charge exchange on ammonium recovery from high strength wastewater using a microbial fuel cell. Bioresour Technol 102(6):4376–4382

    Article  Google Scholar 

  • Kuntke P, Sleutels T, Saakes M, Buisman CJN (2014) Hydrogen production and ammonium recovery from urine by a microbial electrolysis cell. Int J Hydrog Energy 39(10):4771–4778

    Article  Google Scholar 

  • Lalaurette E, Thammannagowda S, Mohagheghi A, Maness PC, Logan BE (2009) Hydrogen production from cellulose in a two-stage process combining fermentation and electrohydrogenesis. Int J Hydrog Energy 34:6201–6210

    Article  Google Scholar 

  • Ledezma P, Kuntke P, Buisman CJN, Keller J, Freguia S (2015) Source-separated urine opens golden opportunities for microbial electrochemical technologies. Trends Biotechnol 33(4):214–220

    Article  Google Scholar 

  • Ledezma P, Jermakka J, Keller J, Freguia S (2017) Recovering nitrogen as a solid without chemical dosing: bio-electroconcentration for recovery of nutrients from urine. Environ Sci Technol Lett 4(3):119–124

    Article  Google Scholar 

  • Lee HS, Rittmann BE (2010) Characterization of energy losses in an upflow single-chamber microbial electrolysis cell. Int J Hydrog Energy 35:920–927

    Article  Google Scholar 

  • Lee HS, Vermaas WFJ, Rittmann BE (2010) Biological hydrogen production: prospects and challenges. Trends Biotechnol 28:262–271

    Article  Google Scholar 

  • Liang P, Duan R, Jiang Y, Zhang X, Qiu Y, Huang X (2018) One-year operation of 1000-L modularized microbial fuel cell for municipal wastewater treatment. Water Res 141:1–8

    Article  Google Scholar 

  • Liu H, Grot S, Logan BE (2005) Electrochemically assisted microbial production of hydrogen from acetate. Environ Sci Technol 39(11):4317–4320

    Article  Google Scholar 

  • Liu Y, Yu P, Song X, Qu Y (2008) Hydrogen production from cellulose by co-culture of Clostridium thermocellum JN4 and Thermoanaerobacterium thermosaccharolyticum GD17. Int J Hydrog Energy 33:2927–2933

    Article  Google Scholar 

  • Liu H, Hu H, Chignell J, YanZhen F, Fan Y (2010) Microbial electrolysis: novel technology for hydrogen production from biomass. Biofuels 1:129–142

    Article  Google Scholar 

  • Logan BE (2010) Scaling up microbial fuel cells and other bioelectrochemical systems. Appl Microbiol Biotechnol 85(6):1665–1671

    Article  Google Scholar 

  • Logan BE, Rabaey K (2012) Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies. Science 337(6095):686–690

    Article  Google Scholar 

  • Logan BE, Hamelers B, Rozendal RA, Schrorder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K (2006) Microbial fuel cells: methodology and technology. Environ Sci Technol 40(17):5181–5192

    Article  Google Scholar 

  • Logan BE, Call D, Cheng S, Hamelers HVM, Sleutels T, Jeremiasse AW, Rozendal RA (2008) Microbial electrolysis cells for high yield hydrogen gas production from organic matter. Environ Sci Technol 42:8630–8640

    Article  Google Scholar 

  • Lovley DR (2008) The microbe electric: conversion of organic matter to electricity. Curr Opin Biotechnol 19(6):564–571

    Article  Google Scholar 

  • Lovley DR (2011) Powering microbes with electricity: direct electron transfer from electrodes to microbes. Environ Microbiol Rep 3(1):27–35

    Article  Google Scholar 

  • Lovley DR (2012) Electromicrobiology. In: Gottesman S, Harwood CS, Schneewind O (eds) Annual review of microbiology, vol 66. Annual Reviews, Palo Alto, pp 391–409

    Google Scholar 

  • Malpica R, Franco B, Rodriguez C, Kwon O, Georgellis D (2004) Identification of a quinone-sensitive redox switch in the ArcB sensor kinase. Proc Natl Acad Sci U S A 101(36):13318–13323

    Article  Google Scholar 

  • Marshall CW, Ross DE, Fichot EB, Norman RS, May HD (2012) Electrosynthesis of commodity chemicals by an autotrophic microbial community. Appl Environ Microbiol 78(23):8412–8420

    Article  Google Scholar 

  • Maurer M, Pronk W, Larsen TA (2006) Treatment processes for source-separated urine. Water Res 40(17):3151–3166

    Article  Google Scholar 

  • Moscoviz R, Toledo-Alarcón J, Trably E, Bernet N (2016) Electro-fermentation: how to drive fermentation using electrochemical systems. Trends Biotechnol 34:856–865

    Article  Google Scholar 

  • Moscoviz R, Trably E, Bernet N (2017) Electro-fermentation triggering population selection in mixed-culture glycerol fermentation. Microb Biotechnol 11(1):74–83

    Article  Google Scholar 

  • Nealson KH, Rowe AR (2016) Electromicrobiology: realities, grand challenges, goals and predictions. Microb Biotechnol 9(5):595–600

    Article  Google Scholar 

  • Nevin KP, Woodard TL, Franks AE, Summers ZM, Lovley DR (2010) Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds. MBio 1(2):e00103–e00110

    Article  Google Scholar 

  • Nevin KP, Hensley SA, Franks AE, Summers ZM, Ou JH, Woodard TL, Snoeyenbos-West OL, Lovley DR (2011) Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms. Appl Environ Microbiol 77(9):2882–2886

    Article  Google Scholar 

  • Pandey P, Shinde VN, Deopurkar RL, Kale SP, Patil SA, Pant D (2016) Recent advances in the use of different substrates in microbial fuel cells toward wastewater treatment and simultaneous energy recovery. Appl Energy 168:706–723

    Article  Google Scholar 

  • Pant D, Van Bogaert G, Diels L, Vanbroekhoven K (2010) A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresour Technol 101(6):1533–1543

    Article  Google Scholar 

  • Pham TH, Aelterman P, Verstraete W (2009) Bioanode performance in bioelectrochemical systems: recent improvements and prospects. Trends Biotechnol 27(3):168–178

    Article  Google Scholar 

  • Potter MC (1911) Electrical effects accompanying the decomposition of organic compounds. Proc R Soc Lond B 84(571):260–276

    Article  Google Scholar 

  • Rabaey K, Rozendal RA (2010) Microbial electrosynthesis - revisiting the electrical route for microbial production. Nat Rev Microbiol 8(10):706–716

    Article  Google Scholar 

  • Rodriguez Arredondo M, Kuntke P, Jeremiasse AW, Sleutels THJA, Buisman CJN, ter Heijne A (2015) Bioelectrochemical systems for nitrogen removal and recovery from wastewater. Environ Sci: Water Res Technol 1(1):22–33

    Google Scholar 

  • Rozendal RA, Hamelers HVM, Euverink GJW, Metz SJ, Buisman CJN (2006) Principle and perspectives of hydrogen production through biocatalyzed electrolysis. Int J Hydrog Energy 31:1632–1640

    Article  Google Scholar 

  • Rozendal RA, Hamelers HVM, Molenkmp RJ, Buisman JN (2007) Performance of single chamber biocatalyzed electrolysis with different types of ion exchange membranes. Water Res 41:1984–1994

    Article  Google Scholar 

  • Rozendal RA, Jeremiasse AW, Hamelers HVM, Buisman CJN (2008) Hydrogen production with a microbial biocathode. Environ Sci Technol 42:629–634

    Article  Google Scholar 

  • Santoro C, Arbizzani C, Erable B, Ieropoulos I (2017) Microbial fuel cells: from fundamentals to applications. A review. J Power Sources 356:225–244

    Article  Google Scholar 

  • Schievano A, Pepé Sciarria T, Vanbroekhoven K et al (2016) Electro-fermentation—merging electrochemistry with fermentation in industrial applications. Trends Biotechnol 34:866–878

    Article  Google Scholar 

  • Schuppert B, Schink B, Trösch W (1992) Batch and continuous production of propionic acid from whey permeate by Propionibacterium acidi-propionici in a three-electrode amperometric culture system. Appl Microbiol Biotechnol 37:549–553

    Article  Google Scholar 

  • Selembo PA, Merrill MD, Logan BE (2009) The use of stainless steel and nickel alloys as low-cost cathodes in microbial electrolysis cells. J Power Sources 190:271–278

    Article  Google Scholar 

  • Sevda S, Yuan H, He Z, Abu-Reesh IM (2015) Microbial desalination cells as a versatile technology: functions, optimization and prospective. Desalination 371:9–17

    Article  Google Scholar 

  • Speers AM, Young JM, Reguera G (2014) Fermentation of glycerol into ethanol in a microbial electrolysis cell driven by a customized consortium. Environ Sci Technol 48:6350–6358

    Article  Google Scholar 

  • Tartakovsky B, Manuel MF, Wang H, Guiot SR (2009) High rate membrane-less microbial electrolysis cell for continuous hydrogen production. Int J Hydrog Energy 34(2):672–677

    Article  Google Scholar 

  • Trapero JR, Horcajada L, Linares JJ, Lobato J (2017) Is microbial fuel cell technology ready? An economic answer towards industrial commercialization. Appl Energy 185:698–707

    Article  Google Scholar 

  • Villano M, De Bonis L, Rossetti S, Aulenta F, Majone M (2011) Bioelectrochemical hydrogen production with hydrogenophilic dechlorinating bacteria as electrocatalytic agents. Bioresour Technol 102:3193–3199

    Article  Google Scholar 

  • Villano M, Scardala S, Aulenta F, Majone M (2013) Carbon and nitrogen removal and enhanced methane production in a microbial electrolysis cell. Bioresour Technol 130:366–371

    Article  Google Scholar 

  • Villano M, Paiano P, Palma E, Miccheli A, Majone M (2017) Electrochemically driven fermentation of organic substrates with undefined mixed microbial cultures. ChemSusChem 10(15):3091–3097

    Article  Google Scholar 

  • Virdis B, Rabaey K, Yuan Z, Keller J (2008) Microbial fuel cells for simultaneous carbon and nitrogen removal. Water Res 42(12):3013–3024

    Article  Google Scholar 

  • Wagner RC, Regan JM, Oh SE, Zuo Y, Logan BE (2009) Hydrogen and methane production from swine wastewater using microbial electrolysis cells. Water Res 43:1480–1488

    Article  Google Scholar 

  • Yu ZS, Leng XY, Zhao S, Ji J, Zhou TY, Khan A, Kakde A, Liu P, Li XK (2018) A review on the applications of microbial electrolysis cells in anaerobic digestion. Bioresour Technol 255:340–348

    Article  Google Scholar 

  • Zeppilli M, Villano M, Aulenta F, Lampis S, Vallini G, Majone M (2015) Effect of the anode feeding composition on the performance of a continuous-flow methane-producing microbial electrolysis cell. Environ Sci Pollut Res 22(10):7349–7360

    Article  Google Scholar 

  • Zhang F, Ge Z, Grimaud J, Hurst J, He Z (2013) In situ investigation of tubular microbial fuel cells deployed in an aeration tank at a municipal wastewater treatment plant. Bioresour Technol 136:316–321

    Article  Google Scholar 

  • Zhou MH, Chi ML, Luo JM, He HH, Jin T (2011) An overview of electrode materials in microbial fuel cells. J Power Sources 196(10):4427–4435

    Article  Google Scholar 

  • Zhou M, Chen J, Freguia S et al (2013) Carbon and electron fluxes during the electricity driven 1,3-propanediol biosynthesis from glycerol. Environ Sci Technol 47:11199–11205

    Article  Google Scholar 

  • Zhou M, Freguia S, Dennis PG et al (2015) Development of bioelectrocatalytic activity stimulates mixed-culture reduction of glycerol in a bioelectrochemical system: bioelectrocatalytic activity in glycerol-fed BESs. Microb Biotechnol 8:483–489

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Bernet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Moscoviz, R., Desmond-Le Quéméner, E., Trably, E., Bernet, N. (2019). Bioelectrochemical Systems for the Valorization of Organic Residues. In: Bastidas-Oyanedel, JR., Schmidt, J. (eds) Biorefinery. Springer, Cham. https://doi.org/10.1007/978-3-030-10961-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10961-5_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10960-8

  • Online ISBN: 978-3-030-10961-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics