Skip to main content

Nutrient and Carbon Recovery from Organic Wastes

  • Chapter
  • First Online:
Biorefinery

Abstract

An increasing amount of waste is produced year over year, without any signs of slowing down. However, by reorienting the perspective, organic residual waste can be seen as a valuable source of nutrients and carbon that should be valorized, instead of a waste product to be disposed of. This chapter covers the main methods of converting waste into value-added products. Two main categories of waste conversion technologies are explored: thermochemical and biochemical. Thermochemical conversion technologies include incineration, gasification, pyrolysis, and torrefaction, while biochemical conversion technologies include anaerobic digestion, fermentation, composting, and landfills with gas capture. Additional technologies for nutrient recovery as marketable end products following thermochemical and biochemical conversion are also discussed, including phosphorus (P) extraction, ammonia stripping and absorption, precipitation/crystallization, and membrane filtration. Carbon dioxide capture and valorization is also briefly explored. This chapter aims at providing general information on these technologies and the products that can be obtained through their use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acelas NY, López DP, Brilman DW, Kersten SR, Kootstra AMJ (2014) Supercritical water gasification of sewage sludge: gas production and phosphorus recovery. Bioresour Technol 174:167–175

    Article  Google Scholar 

  • Acharya B, Sule I, Dutta A (2012) A review on advances of torrefaction technologies for biomass processing. Biomass Convers Biorefin 2:349–369

    Article  Google Scholar 

  • Adam C, Peplinski B, Michaelis M, Kley G, Simon F-G (2009) Thermochemical treatment of sewage sludge ashes for phosphorus recovery. Waste Manag 29:1122–1128

    Article  Google Scholar 

  • ADEME Bourgogne (2013) La méthanisation agricole en voie sèche discontinue. Agence de l’Environnement et de la Maîtrise de l’Energie

    Google Scholar 

  • Adhikari BK, Barrington S, Martinez J, King S (2008) Characterization of food waste and bulking agents for composting. Waste Manag 28:795–804

    Article  Google Scholar 

  • Ahn Y, Bae SJ, Kim M, Cho SK, Baik S, Lee JI, Cha JE (2015) Review of supercritical CO2 power cycle technology and current status of research and development. Nucl Eng Technol 47:647–661

    Article  Google Scholar 

  • Al Sadat WI, Archer LA (2016) The O2-assisted Al/CO2 electrochemical cell: A system for CO2 capture/conversion and electric power generation. Sci Adv 2:e1600968

    Article  Google Scholar 

  • Angelonidi E, Smith SR (2015) A comparison of wet and dry anaerobic digestion processes for the treatment of municipal solid waste and food waste. Water Environ J 29:549–557

    Article  Google Scholar 

  • Arena U (2012) Process and technological aspects of municipal solid waste gasification. A review. Waste Manag 32:625–639

    Article  Google Scholar 

  • Ariunbaatar J, Panico A, Esposito G, Pirozzi F, Lens PN (2014) Pretreatment methods to enhance anaerobic digestion of organic solid waste. Appl Energy 123:143–156

    Article  Google Scholar 

  • Arthington J, Rechcigl J, Yost G, McDowell L, Fanning M (2002) Effect of ammonium sulfate fertilization on bahiagrass quality and copper metabolism in grazing beef cattle 1, 2. J Anim Sci 80:2507–2512

    Google Scholar 

  • Asadullah M (2014) Barriers of commercial power generation using biomass gasification gas: a review. Renew Sustain Energy Rev 29:201–215

    Article  Google Scholar 

  • Atienza–Martínez M, Gea G, Arauzo J, Kersten SR, Kootstra AMJ (2014) Phosphorus recovery from sewage sludge char ash. Biomass Bioenergy 65:42–50

    Article  Google Scholar 

  • Bajpai P (2017) Basics of anaerobic digestion process. In: Anaerobic technology in pulp and paper industry. Springer, Berlin

    Chapter  Google Scholar 

  • Biello D (2008) Cement from CO2: a concrete cure for global warming? Sci Am 7:61

    Google Scholar 

  • Biorecro AB (2010) Global status of BECCS projects 2010. Global CCS Institute, Melbourne

    Google Scholar 

  • Bolobova A, Kondrashchenko V (2000) Use of yeast fermentation waste as a biomodifier of concrete. Appl Biochem Microbiol 36:205–214

    Article  Google Scholar 

  • Brethauer S, Wyman CE (2010) Continuous hydrolysis and fermentation for cellulosic ethanol production. Bioresour Technol 101:4862–4874

    Article  Google Scholar 

  • Bustamante M, Alburquerque J, Restrepo A, De la Fuente C, Paredes C, Moral R, Bernal M (2012) Co-composting of the solid fraction of anaerobic digestates, to obtain added-value materials for use in agriculture. Biomass Bioenergy 43:26–35

    Article  Google Scholar 

  • Bustamante M, Restrepo A, Alburquerque J, Pérez-Murcia M, Paredes C, Moral R, Bernal M (2013) Recycling of anaerobic digestates by composting: effect of the bulking agent used. J Clean Prod 47:61–69

    Article  Google Scholar 

  • Carpenter D, Westover TL, Czernik S, Jablonski W (2014) Biomass feedstocks for renewable fuel production: a review of the impacts of feedstock and pretreatment on the yield and product distribution of fast pyrolysis bio-oils and vapors. Green Chem 16:384–406

    Article  Google Scholar 

  • Chandler AJ, Eighmy TT, Hjelmar O, Kosson D, Sawell S, Vehlow J, Van der Sloot H, Hartlén J (1997) Municipal solid waste incinerator residues. Elsevier, Amsterdam

    Google Scholar 

  • Chatterjee N, Flury M, Hinman C, Cogger CG (2013) Chemical and physical characteristics of compost leachates. A review report prepared for the Washington State Department of Transportation. Washington State University

    Google Scholar 

  • Chen L, Neibling H (2014) Anaerobic digestion basics. University of Idaho Extension, Moscow, p 6

    Google Scholar 

  • Chen L, De Haro M, Moore A, Falen C (2011) The composting process: dairy compost production and use in Idaho CIS 1179. University of Idaho, Moscow

    Google Scholar 

  • Cho S-K, Im W-T, Kim D-H, Kim M-H, Shin H-S, Oh S-E (2013) Dry anaerobic digestion of food waste under mesophilic conditions: performance and methanogenic community analysis. Bioresour Technol 131:210–217

    Article  Google Scholar 

  • Chowdhury MA, de Neergaard A, Jensen LS (2014) Potential of aeration flow rate and bio-char addition to reduce greenhouse gas and ammonia emissions during manure composting. Chemosphere 97:16–25

    Article  Google Scholar 

  • Cieślik B, Konieczka P (2017) A review of phosphorus recovery methods at various steps of wastewater treatment and sewage sludge management. The concept of “no solid waste generation” and analytical methods. J Clean Prod 142:1728–1740

    Article  Google Scholar 

  • Crago CL, Khanna M, Barton J, Giuliani E, Amaral W (2010) Competitiveness of Brazilian sugarcane ethanol compared to US corn ethanol. Energy Policy 38:7404–7415

    Article  Google Scholar 

  • David A (2013) Technical document on municipal solid waste organics processing. Environment Canada

    Google Scholar 

  • DeBruyn J, Hilborn D (2007) Anaerobic digestion basics. Ontario Ministry of Agriculture, Food and Rural Affairs, Guelph, ON, p 10

    Google Scholar 

  • Di Maria F, Micale C (2015) Life cycle analysis of incineration compared to anaerobic digestion followed by composting for managing organic waste: the influence of system components for an Italian district. Int J Life Cycle Assess 20:377–388

    Article  Google Scholar 

  • Drosg B, Fuchs W, Al Seadi T, Madsen M, Linke B (2015) Nutrient recovery by biogas digestate processing. IEA Bioenergy, Dublin, pp 7–11

    Google Scholar 

  • Ekinci K, Tosun I, Seyit Ahmet I, Memici M, Kumbul BS (2017) Design and construction of a pilot scale aerated static pile composting systems. Sci Papers Ser E Land Reclam Earth Observ Survey Environ Eng 6:7–12

    Google Scholar 

  • Elser J, Bennett E (2011) Phosphorus cycle: a broken biogeochemical cycle. Nature 478:29

    Article  Google Scholar 

  • Energy Research Centre of the Netherlands (2002) Workshop on carbon capture and storage. Intergovernmental Panel on Climate Change, Geneva

    Google Scholar 

  • Engels C, Kirkby E, White P (2012) Mineral nutrition, yield and source–sink relationships. Marschner’s mineral nutrition of higher plants, 3rd edn. Elsevier, Amsterdam

    Google Scholar 

  • Falkowski P, Scholes R, Boyle E, Canadell J, Canfield D, Elser J, Gruber N, Hibbard K, Högberg P, Linder S (2000) The global carbon cycle: a test of our knowledge of earth as a system. Science 290:291–296

    Article  Google Scholar 

  • Guedes P, Couto N, Ottosen LM, Ribeiro AB (2014) Phosphorus recovery from sewage sludge ash through an electrodialytic process. Waste Manag 34:886–892

    Article  Google Scholar 

  • Guendouz J, Buffière P, Cacho J, Carrère M, Delgenes J-P (2010) Dry anaerobic digestion in batch mode: design and operation of a laboratory-scale, completely mixed reactor. Waste Manag 30:1768–1771

    Article  Google Scholar 

  • Gulati R, Saxena R, Gupta R (2002) Fermentation waste of Aspergillus terreus: a potential copper biosorbent. World J Microbiol Biotechnol 18:397–401

    Article  Google Scholar 

  • Hansen V, Müller-Stöver D, Ahrenfeldt J, Holm JK, Henriksen UB, Hauggaard-Nielsen H (2015) Gasification biochar as a valuable by-product for carbon sequestration and soil amendment. Biomass Bioenergy 72:300–308

    Article  Google Scholar 

  • Hoornweg D, Bhada-Tata P (2012) What a waste: a global review of solid waste management. World Bank, Washington, DC

    Google Scholar 

  • Jaffrin A, Bentounes N, Joan AM, Makhlouf S (2003) Landfill biogas for heating greenhouses and providing carbon dioxide supplement for plant growth. Biosyst Eng 86:113–123

    Article  Google Scholar 

  • Jahirul MI, Rasul MG, Chowdhury AA, Ashwath N (2012) Biofuels production through biomass pyrolysis—a technological review. Energies 5:4952–5001

    Article  Google Scholar 

  • Jay K, Stieglitz L (1995) Identification and quantification of volatile organic components in emissions of waste incineration plants. Chemosphere 30:1249–1260

    Article  Google Scholar 

  • Jiang Y, Wang X, Cao Q, Dong L, Guan J, Mu X (2016) Chemical conversion of biomass to green chemicals. Sustainable production of bulk chemicals. Springer, Berlin

    Google Scholar 

  • Kalmykova Y, Fedje KK (2013) Phosphorus recovery from municipal solid waste incineration fly ash. Waste Manag 33:1403–1410

    Article  Google Scholar 

  • Kataki S, West H, Clarke M, Baruah DC (2016) Phosphorus recovery as struvite: Recent concerns for use of seed, alternative Mg source, nitrogen conservation and fertilizer potential. Resour Conserv Recycl 107:142–156

    Article  Google Scholar 

  • Ketzer JM, Iglesias RS, Einloft S (2012) Reducing greenhouse gas emissions with CO2 capture and geological storage. In: Handbook of climate change mitigation. Springer, Berlin

    Google Scholar 

  • Kleemann R, Chenoweth J, Clift R, Morse S, Pearce P, Saroj D (2017) Comparison of phosphorus recovery from incinerated sewage sludge ash (ISSA) and pyrolysed sewage sludge char (PSSC). Waste Manag 60:201–210

    Article  Google Scholar 

  • Kuchenrither R, Martin W, Smith D, Williams D (1985) Design and operation of an aerated windrow composting facility. J Water Pollut Control Feder 57:213–219

    Google Scholar 

  • Kulikowska D, Klimiuk E (2008) The effect of landfill age on municipal leachate composition. Bioresour Technol 99:5981–5985

    Article  Google Scholar 

  • Laird DA, Brown RC, Amonette JE, Lehmann J (2009) Review of the pyrolysis platform for coproducing bio-oil and biochar. Biofuels Bioprod Biorefin 3:547–562

    Article  Google Scholar 

  • Lairon D (2011) Nutritional quality and safety of organic food. Sustainable agriculture, vol 2. Springer, Berlin

    Google Scholar 

  • Latifian M, Liu J, Mattiasson B (2012) Struvite-based fertilizer and its physical and chemical properties. Environ Technol 33:2691–2697

    Article  Google Scholar 

  • Lazcano C, Arnold J, Zaller J, Martín JD, Salgado AT (2009) Compost and vermicompost as nursery pot components: effects on tomato plant growth and morphology. Span J Agric Res 944:951

    Google Scholar 

  • Lazcano C, Martínez-Blanco J, Christensen TH, Muñoz P, Rieradevall J, Møller J, Antón A, Boldrin A, Nuñez M (2014) Environmental benefits of compost use on land through LCA–a review of the current gaps. Proceedings of the 9th International Conference on Life Cycle Assessment in the Agri-Food Sector (LCA Food 2014), San Francisco, California, USA, 8–10 October, 2014. American Center for Life Cycle Assessment

    Google Scholar 

  • Lee H-J, Oh S-J, Moon S-H (2003) Recovery of ammonium sulfate from fermentation waste by electrodialysis. Water Res 37:1091–1099

    Article  Google Scholar 

  • Lettinga G, Rebac S, Zeeman G (2001) Challenge of psychrophilic anaerobic wastewater treatment. Trends Biotechnol 19:363–370

    Article  Google Scholar 

  • Leung DY, Caramanna G, Maroto-Valer MM (2014) An overview of current status of carbon dioxide capture and storage technologies. Renew Sustain Energy Rev 39:426–443

    Article  Google Scholar 

  • Li X, Zhao Q (2003) Recovery of ammonium-nitrogen from landfill leachate as a multi-nutrient fertilizer. Ecol Eng 20:171–181

    Article  Google Scholar 

  • Lim SL, Lee LH, Wu TY (2016) Sustainability of using composting and vermicomposting technologies for organic solid waste biotransformation: recent overview, greenhouse gases emissions and economic analysis. J Clean Prod 111:262–278

    Article  Google Scholar 

  • Limayem A, Ricke SC (2012) Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Progr Energ Combust Sci 38:449–467

    Article  Google Scholar 

  • Lindmark J, Eriksson P, Thorin E (2014) The effects of different mixing intensities during anaerobic digestion of the organic fraction of municipal solid waste. Waste Manag 34:1391–1397

    Article  Google Scholar 

  • Lorentzen G (1994) Revival of carbon dioxide as a refrigerant. Int J Refriger 17:292–301

    Article  Google Scholar 

  • Massey MS, Davis JG, Sheffield RE, Ippolito JA (2007) Struvite production from dairy wastewater and its potential as a fertilizer for organic production in calcareous soils. International Symposium on Air Quality and Waste Management for Agriculture, 16–19 September 2007, Broomfield, Colorado. American Society of Agricultural and Biological Engineers

    Google Scholar 

  • Matter JM, Stute M, Snæbjörnsdottir SÓ, Oelkers EH, Gislason SR, Aradottir ES, Sigfusson B, Gunnarsson I, Sigurdardottir H, Gunnlaugsson E (2016) Rapid carbon mineralization for permanent disposal of anthropogenic carbon dioxide emissions. Science 352:1312–1314

    Article  Google Scholar 

  • Minale M, Worku T (2014) Anaerobic co-digestion of sanitary wastewater and kitchen solid waste for biogas and fertilizer production under ambient temperature: waste generated from condominium house. Int J Environ Sci Technol 11:509–516

    Article  Google Scholar 

  • Mor S, Ravindra K, De Visscher A, Dahiya R, Chandra A (2006) Municipal solid waste characterization and its assessment for potential methane generation: a case study. Sci Total Environ 371:1–10

    Article  Google Scholar 

  • Ndegwa P, Thompson S (2001) Integrating composting and vermicomposting in the treatment and bioconversion of biosolids. Bioresour Technol 76:107–112

    Article  Google Scholar 

  • Neher DA, Weicht TR, Bates ST, Leff JW, Fierer N (2013) Changes in bacterial and fungal communities across compost recipes, preparation methods, and composting times. PLoS One 8:e79512

    Article  Google Scholar 

  • Nigussie A, Kuyper TW, Bruun S, de Neergaard A (2016) Vermicomposting as a technology for reducing nitrogen losses and greenhouse gas emissions from small-scale composting. J Clean Prod 139:429–439

    Article  Google Scholar 

  • Noyola A, Morgan-Sagastume JM, Lopez-Hernandez JE (2006) Treatment of biogas produced in anaerobic reactors for domestic wastewater: odor control and energy/resource recovery. Rev Environ Sci Biotechnol 5:93–114

    Article  Google Scholar 

  • Olajire AA (2013) Valorization of greenhouse carbon dioxide emissions into value-added products by catalytic processes. J CO2 Utilization 3:74–92

    Article  Google Scholar 

  • Ontario Ministry of the Environment (2008a) Design guidelines for sewage works: sludge stabilization

    Google Scholar 

  • Ontario Ministry of the Environment (2008b) Design guidelines for sewage works: sludge thickening and dewatering

    Google Scholar 

  • Oram NJ, van de Voorde TF, Ouwehand G-J, Bezemer TM, Mommer L, Jeffery S, Van Groenigen JW (2014) Soil amendment with biochar increases the competitive ability of legumes via increased potassium availability. Agr Ecosyst Environ 191:92–98

    Article  Google Scholar 

  • Patni N, Pillai SG, Dwivedi AH (2013) Wheat as a promising substitute of corn for bioethanol production. Proc Eng 51:355–362

    Article  Google Scholar 

  • Petzet S, Peplinski B, Cornel P (2012) On wet chemical phosphorus recovery from sewage sludge ash by acidic or alkaline leaching and an optimized combination of both. Water Res 46:3769–3780

    Article  Google Scholar 

  • Powell JT, Townsend TG, Zimmerman JB (2016) Estimates of solid waste disposal rates and reduction targets for landfill gas emissions. Nat Clim Change 6:162–165

    Article  Google Scholar 

  • Quaik S, Ibrahim MH (2013) A review on potential of vermicomposting derived liquids in agricultural use. Int J Sci Res Publ 3:1–6

    Google Scholar 

  • Rahman MM, Salleh MAM, Rashid U, Ahsan A, Hossain MM, Ra CS (2014) Production of slow release crystal fertilizer from wastewaters through struvite crystallization—a review. Arab J Chem 7:139–155

    Article  Google Scholar 

  • Romero C, Ramos P, Costa C, Márquez MC (2013) Raw and digested municipal waste compost leachate as potential fertilizer: comparison with a commercial fertilizer. J Clean Prod 59:73–78

    Article  Google Scholar 

  • Samolada M, Zabaniotou A (2014) Comparative assessment of municipal sewage sludge incineration, gasification and pyrolysis for a sustainable sludge-to-energy management in Greece. Waste Manag 34:411–420

    Article  Google Scholar 

  • Shanableh A, Ginige P (1999) Impact of metals bioleaching on the nutrient value of biological nutrient removal biosolids. Water Sci Technol 39:175–181

    Article  Google Scholar 

  • Shanableh A, Omar M (2003) Bio-acidification and leaching of metals, nitrogen, and phosphorus from soil and sludge mixtures. Soil Sediment Contam 12:565–589

    Article  Google Scholar 

  • Siddiqui Z, Horan N, Anaman K (2011) Optimisation of C: N ratio for co-digested processed industrial food waste and sewage sludge using the BMP test. Int J Chem React Eng 9:1–9

    Google Scholar 

  • Steffen R, Szolar O, Braun R (1998) Feedstocks for anaerobic digestion. Institute of Agrobiotechnology Tulin, University of Agricultural Sciences, Vienna

    Google Scholar 

  • Tan Z, Lagerkvist A (2011) Phosphorus recovery from the biomass ash: a review. Renew Sustain Energy Rev 15:3588–3602

    Article  Google Scholar 

  • Themelis NJ, Ulloa PA (2007) Methane generation in landfills. Renew Energy 32:1243–1257

    Article  Google Scholar 

  • Tortosa G, Castellano-Hinojosa A, Correa-Galeote D, Bedmar EJ (2017) Evolution of bacterial diversity during two-phase olive mill waste (“alperujo”) composting by 16S rRNA gene pyrosequencing. Bioresour Technol 224:101–111

    Article  Google Scholar 

  • United States Department of Labor (2002) Portable fire extinguishers—1910.157. Occupational Safety and Health Standards

    Google Scholar 

  • United States Environmental Protection Agency (2018) Types of Composting and Understanding the Process [Online]. Accessed May 2018

    Google Scholar 

  • Vakalis S, Sotiropoulos A, Moustakas K, Malamis D, Vekkos K, Baratieri M (2016) Characterization of hotel bio-waste by means of simultaneous thermal analysis. Waste Biomass Valorization 7:649–657

    Article  Google Scholar 

  • Vaneeckhaute C, Lebuf V, Michels E, Belia E, Vanrolleghem PA, Tack FM, Meers E (2017) Nutrient recovery from digestate: systematic technology review and product classification. Waste Biomass Valorization 8:21–40

    Article  Google Scholar 

  • Victor D, Zhou D, Ahmed E, Dadhich P, Olivier J, Rogner H-H, Sheikho K, Yamaguchi M (2014) Climate change 2014: mitigation of climate change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change: Introductory chapter. Cambridge University Press, Cambridge

    Google Scholar 

  • Vijayaraghavan K, Lee MW, Yun Y-S (2008) Evaluation of fermentation waste (Corynebacterium glutamicum) as a biosorbent for the treatment of nickel (II)-bearing solutions. Biochem Eng J 41:228–233

    Article  Google Scholar 

  • Vu QD, de Neergaard A, Tran TD, Hoang HTT, Vu VTK, Jensen LS (2015) Greenhouse gas emissions from passive composting of manure and digestate with crop residues and biochar on small-scale livestock farms in Vietnam. Environ Technol 36:2924–2935

    Article  Google Scholar 

  • Walker L, Charles W, Cord-Ruwisch R (2009) Comparison of static, in-vessel composting of MSW with thermophilic anaerobic digestion and combinations of the two processes. Bioresour Technol 100:3799–3807

    Article  Google Scholar 

  • Whittaker S, Perkins E (2013) Technical aspects of CO2 enhanced oil recovery and associated carbon storage. Global CCS institute, Melbourne

    Google Scholar 

  • Wong J, Xiang L, Gu X, Zhou L (2004) Bioleaching of heavy metals from anaerobically digested sewage sludge using FeS2 as an energy source. Chemosphere 55:101–107

    Article  Google Scholar 

  • World Energy Council (2016) World energy resources, waste to energy, 2016

    Google Scholar 

  • Xie T, Reddy KR, Wang C, Yargicoglu E, Spokas K (2015) Characteristics and applications of biochar for environmental remediation: a review. Crit Rev Environ Sci Technol 45:939–969

    Article  Google Scholar 

  • Yan F, Zhang L, Hu Z, Cheng G, Jiang C, Zhang Y, Xu T, He P, Luo S, Xiao B (2010) Hydrogen-rich gas production by steam gasification of char derived from cyanobacterial blooms (CDCB) in a fixed-bed reactor: influence of particle size and residence time on gas yield and syngas composition. Int J Hydrogen Energy 35:10,212–10,217

    Article  Google Scholar 

  • Yi J, Dong B, Jin J, Dai X (2014) Effect of increasing total solids contents on anaerobic digestion of food waste under mesophilic conditions: performance and microbial characteristics analysis. PLoS One 9:e102548

    Article  Google Scholar 

  • Yuan H, Lu T, Wang Y, Chen Y, Lei T (2016) Sewage sludge biochar: nutrient composition and its effect on the leaching of soil nutrients. Geoderma 267:17–23

    Article  Google Scholar 

  • Zacco A, Borgese L, Gianoncelli A, Struis RP, Depero LE, Bontempi E (2014) Review of fly ash inertisation treatments and recycling. Environ Chem Lett 12:153–175

    Article  Google Scholar 

  • Zhang R, El-Mashad HM, Hartman K, Wang F, Liu G, Choate C, Gamble P (2007) Characterization of food waste as feedstock for anaerobic digestion. Bioresour Technol 98:929–935

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Céline Vaneeckhaute .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Walling, E., Babin, A., Vaneeckhaute, C. (2019). Nutrient and Carbon Recovery from Organic Wastes. In: Bastidas-Oyanedel, JR., Schmidt, J. (eds) Biorefinery. Springer, Cham. https://doi.org/10.1007/978-3-030-10961-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10961-5_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10960-8

  • Online ISBN: 978-3-030-10961-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics