Skip to main content

Bio-Products from Sugar-Based Fermentation Processes

  • Chapter
  • First Online:
Biorefinery

Abstract

This chapter focuses in the research and development on bio-products generated from sugar-rich substrates, like lignocellulose, starch, sucrose, or pure monosaccharides (e.g., glucose), through direct microbial fermentation processes or through the hydrolysis of polysaccharides into fermentable sugars followed by microbial fermentation. Dozens of bio-products are generated from sugars through fermentation processes using modified and unmodified bacteria, yeasts, or filamentous fungi, but only a few processes are under or close to commercialization. Among these bio-products are alcohols, organic acids, microbial oils and hydrocarbons, enzymes, biosurfactants, and biopolymers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Rahman MA, Sonomoto K (2016) Opportunities to overcome the current limitations and challenges for efficient microbial production of optically pure lactic acid. J Biotechnol 236:176–192

    Article  Google Scholar 

  • Abdel-Rahman MA, Tashiro Y, Sonomoto K (2011) Lactic acid production from lignocellulose-derived sugars using lactic acid bacteria: overview and limits. J Biotechnol 156:286–301

    Article  Google Scholar 

  • Ahn JH, Jang YS, Lee SY (2016) Production of succinic acid by metabolically engineered microorganisms. Curr Opin Biotechnol 42:54–66

    Article  Google Scholar 

  • Almeida JRM, Modig T, Petersson A, Hahn-Hägerdal B, Lidén G, Gorwa-Grauslund MF (2007) Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J Chem Technol Biotechnol 82:340–349

    Article  Google Scholar 

  • Alonso S, Rendueles M, Díaz M (2015) Microbial production of specialty organic acids from renewable and waste materials. Crit Rev Biotechnol 35(4):497–513

    Article  Google Scholar 

  • Baccile N, Babonneau F, Banat IM, Ciesielska K, Cuvier A-S, Devreese B, Everaert B, Lydon H, Marchant R, Mitchell CA, Roelants S, Six L, Theeuwes E, Tsatsos G, Tsotsou GE, Vanlerberghe B, Van Bogaert INA, Soetaert W (2017) Development of a cradle-to-grave approach for acetylated acidic sophorolipid biosurfactants. ACS Sust Chem Eng 5:1186–1198

    Article  Google Scholar 

  • Bahia FM, Almeida GC, Andrade LP, Campos CG, Queiroz LR, Silva RLV, Abdelnur PV, Corrêa JR, Bettiga M, Parachin NS (2018) Rhamnolipids production from sucrose by engineered Saccharomyces cerevisiae. Sci Rep 8:2905

    Article  Google Scholar 

  • Baral NR, Slutzky L, Shah A, Ezeji TC, Cornish K, Christy A (2016) Acetone-butanol-ethanol fermentation of corn stover: current production methods, economic viability and commercial use. FEMS Microbiol Lett 363(6)

    Article  Google Scholar 

  • Beller HR, Lee TS, Katz L (2015) Natural products as biofuels and bio-based chemicals: fatty acids and isoprenoids. Nat Prod Rep 32:1508

    Article  Google Scholar 

  • Benjamin KR, Silva IR, Cherubim JP, McPhee D, Paddon CJ (2016) Developing commercial production of semi-synthetic artemisinin, and of β-Farnesene, an isoprenoid produced by fermentation of Brazilian sugar. J Braz Chem Soc 27(8):1339–1345

    Google Scholar 

  • Beuker J, Barth T, Steier A, Wittgens A, Rosenau F, Henkel M, Hausmann R (2016) High titer heterologous rhamnolipid production. AMB Express 6:124

    Article  Google Scholar 

  • Branduardi P, Porro N (2016) n-butanol: challenges and solutions for shifting natural metabolic pathways into a viable microbial production. FEMS Microbiol Lett 363:fnw070

    Article  Google Scholar 

  • Brumano LP, Soler MF, da Silva SS (2016) Recent advances in sustainable production and application of biosurfactants in Brazil and Latin America. Ind Biotechnol 12(1):31–39

    Article  Google Scholar 

  • Cabrera-Valladares N, Richardson AP, Olvera C, Treviño LG, Déziel E, Lépine F, Soberón-Chávez G (2006) Monorhamnolipids and 3-(3-hydroxyalkanoyloxy) alkanoic acids (HAAs) production using Escherichia coli as a heterologous host. Appl Microbiol Biotechnol 73:187–194

    Article  Google Scholar 

  • Chen QC (2010) Industrial production of PHA. In: Chen QC (ed) Plastics from bacteria: natural functions and applications, microbiology monographs, vol 14. Springer, Berlin, pp 121–132

    Chapter  Google Scholar 

  • Chong H, Li Q (2017) Microbial production of rhamnolipids: opportunities, challenges and strategies. Microb Cell Fact 16:137

    Article  Google Scholar 

  • Daniel H, Reuss M, Syldatk C (1998) Production of sophorolipids in high concentration from deproteinized whey and rapeseed oil in a two stage fed batch process using Candida bombicola ATCC 22214 and Cryptococcus curvatus ATCC 20509. Biotechnol Lett 20:1153

    Article  Google Scholar 

  • Deloitte Report (2014) Opportunities for the fermentation-based chemical industry. An analysis of the market potential and competitiveness of North-West Europe. https://www2.deloitte.com/content/dam/Deloitte/nl/Documents/manufacturing/deloitte-nl-manufacturing-opportunities-for-the-fermentation-based-chemical-industry-2014.pdf. Accessed June 2018

  • Demain AL, Martens E (2017) Production of valuable compounds by molds and yeasts. J Antibiot 70:347–360

    Article  Google Scholar 

  • Demeke MM, Dietz H, Li Y, Foulquié-Moreno MR, Mutturi S, Deprez S, Abt TD, Bonini BM, Lidén G, Dumortier F, Verplaetse A, Boles E, Thevelein JM (2013) Development of a D-xylose fermenting and inhibitor tolerant industrial Saccharomyces cerevisiae strain with high performance in lignocellulose hydrolysates using metabolic and evolutionary engineering. Biotechnol Biofuels 6:89

    Article  Google Scholar 

  • El Takriti S, Pavlenko N, Searle S (2017) Mitigating international aviation emissions: risks and opportunities for alternative jet fuels. https://www.theicct.org/sites/default/files/publications/Aviation-Alt-Jet-Fuels_ICCT_White-Paper_22032017_vF.pdf

  • Eliasson A, Christensson C, Wahlbom CF, Hahn-Hägerdal B (2000) Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures. Appl Environ Microbiol 66:3381–3386

    Article  Google Scholar 

  • Endres HJ, Siebert-Raths A (2011) Basics of PHA. Bioplast Mag 6(5):43–45

    Google Scholar 

  • Faria NT, Santos MV, Fernandes P, Fonseca LL, Fonseca C, Ferreira FC (2014a) Production of glycolipid biosurfactants, mannosylerythritol lipids, from pentoses and D-glucose/D-xylose mixtures by Pseudozyma yeast strains. Process Biochem 49:1790–1799

    Article  Google Scholar 

  • Faria NT, Santos MV, Ferreira C, Marques S, Ferreira FC, Fonseca C (2014b) Conversion of cellulosic materials into glycolipid biosurfactants, mannosylerythritol lipids, by Pseudozyma spp. under SHF and SSF processes. Microb Cell Fact 13:155

    Article  Google Scholar 

  • Faria NT, Marques S, Fonseca C, Ferreira FC (2015) Direct xylan conversion into glycolipid biosurfactants, mannosylerythritol lipids, by Pseudozyma antarctica PYCC 5048T. Enzyme Microb Technol 71:58–65

    Article  Google Scholar 

  • Farwick A, Bruder S, Schadeweg V, Oreb M, Boles E (2014) Engineering of yeast hexose transporters to transport D-xylose without inhibition by D-glucose. Proc Natl Acad Sci U S A 111:5159–5164

    Article  Google Scholar 

  • Felpeto-Santero C, Rojas A, Tortajada M, Galán B, Ramón D, García JL (2015) Engineering alternative isobutanol production platforms. AMB Express 5:119

    Article  Google Scholar 

  • Fonseca C, Olofsson K, Ferreira C, Runquist D, Fonseca LL, Hahn-Hägerdal B, Lidén G (2011) The glucose/xylose facilitator Gxf1 from Candida intermedia expressed in a xylose-fermenting industrial strain of Saccharomyces cerevisiae increases xylose uptake in SSCF of wheat straw. Enzyme Microb Technol 48:518–525

    Article  Google Scholar 

  • Garcia-Sanchez R, Karhumaa K, Fonseca C, Sanchez N, Almeida VJR, Larsson CU, Bengtsson O, Bettiga M, Hahn-Hägerdal B, Gorwa-Grauslund MF (2010) Improved xylose and arabinose utilization by an industrial recombinant Saccharomyces cerevisiae strain using evolutionary engineering. Biotechnol Biofuels 3:13

    Article  Google Scholar 

  • George KW, Alonso-Gutierrez J, Keasling JD, Lee TS (2015) Isoprenoid drugs, biofuels, and chemicals—artemisinin, farnesene, and beyond. Adv Biochem Eng Biotechnol 148:55–89

    Google Scholar 

  • Ghaffar T, Irshad M, Anwar Z, Aqil T, Zulifqar Z, Tariq A, Kamran M, Ehsan N, Mehmood S (2014) Recent trends in lactic acid biotechnology: a brief review on production to purification. J Radiat Res Appl Sci 7:222–229

    Article  Google Scholar 

  • Gírio FM, Fonseca C, Carvalheiro F, Duarte LC, Marques S, Bogel-Lukasik R (2010) Hemicelluloses for fuel ethanol: a review. Bioresour Technol 101:4775–4800

    Article  Google Scholar 

  • Global Market Insights, Inc.. https://www.gminsights.com/industry-analysis/farnesene-market. Accessed Jan 2018

  • Guettler MV, Jain MK (1996) Method for making succinic acid, Anaerobiospirillum succiniciproducens variants for use in process and methods for obtaining variants. U.S. patent 5521075

    Google Scholar 

  • Hewald S, Linne U, Scherer M, Marahiel MA, Kämper J, Bölker M (2006) Identification of a gene cluster for biosynthesis of mannosylerythritol lipids in the basidiomycetous fungus Ustilago maydis. Appl Environ Microbiol 72:5469–5477

    Article  Google Scholar 

  • IEA Bioenergy Report Task 42 (2012) Bio-based chemicals: value added products from biorefineries

    Google Scholar 

  • Jansen MLA, Bracher JM, Papapetridis I, Verhoeven MD, de Bruijn H, de Waal PP, van Maris AJA, Klaassen P, Pronk JT (2017) Saccharomyces cerevisiae strains for second-generation ethanol production: from academic exploration to industrial implementation. FEMS Yeast Res 17(5)

    Google Scholar 

  • Jiang G, Hill DJ, Kowalczuk M, Johnston B, Adamus G, Irorere V, Radecka I (2016) Review carbon sources for polyhydroxyalkanoates and an integrated biorefinery. Int J Mol Sci 17:1157

    Article  Google Scholar 

  • Jin YS, Jones S, Shi NQ, Jeffries TW (2002) Molecular cloning of XYL3 (D-xylulokinase) from Pichia stipitis and characterization of its physiological function. Appl Environ Microbiol 68:1232–1239

    Article  Google Scholar 

  • Jones DT, Woods DR (1986) Acetone-butanol fermentation revisited. Microbiol Rev 50(4):484–524

    Google Scholar 

  • Jun H, Kieselbach T, Jönsson LJ (2011) Enzyme production by filamentous fungi: analysis of the secretome of Trichoderma reesei grown on unconventional carbon source. Microb Cell Fact 10:68

    Article  Google Scholar 

  • Juturu V, Wu JC (2016) Microbial production of lactic acid: the latest development. Crit Rev Biotechnol 36(6):967–997

    Article  Google Scholar 

  • Kang A, Lee TS (2015) Converting sugars to biofuels: ethanol and beyond. Bioengineering 2:184–203

    Article  Google Scholar 

  • Karhumaa K, Hahn-Hägerdal B, Gorwa-Grauslund MF (2005) Investigation of limiting metabolic steps in the utilization of xylose by recombinant Saccharomyces cerevisiae using metabolic engineering. Yeast 22:359–368

    Article  Google Scholar 

  • Kaur G, Roy I (2015) Strategies for large-scale production of polyhydroxyalkanoates. Chem Biochem Eng Q 29(2):157–172

    Article  Google Scholar 

  • Koller M, Braunegg G (2015) Potential and prospects of continuous polyhydroxyalkanoate (PHA) production. Bioengineering 2:94–121

    Article  Google Scholar 

  • Komesu A, de Oliveira JAR, da Silva Martins LH, Wolf Maciel MR, Maciel Filho RM (2017) Lactic acid production to purification: a review. BioRes 12(2):4364–4383

    Google Scholar 

  • Konishi M, Fukuoka T, Morita T, Imura T, Kitamoto D (2008) Production of new types of sophorolipids by Candida batistae. J Oleo Sci 57:359–369

    Article  Google Scholar 

  • Kootstra M, Elissen H, Huurman S (2017) PHA’s (polyhydroxyalkanoates): general information on structure and raw materials for their production. A running document for “Kleinschalige Bioraffinage WP9: PHA”, Task 5. Report 727

    Google Scholar 

  • Kourmentza C, Plácido J, Venetsaneas N, Burniol-Figols A, Varrone C, Gavala HN, Reis MAM (2017) Recent advances and challenges towards sustainable polyhydroxyalkanoate (PHA) production. Bioengineering 4:55

    Article  Google Scholar 

  • Kuhnert P, Scholten E, Haefner S, Mayor D, Frey J (2010) Basfia succiniciproducens gen. nov., sp. nov., a new member of the family Pasteurellaceae isolated from bovine rumen. Int J Syst Evol Microbiol 60:44–50

    Article  Google Scholar 

  • Kuyper M, Toirkens MJ, Diderich JA, Winkler AA, van Dijken JP, Pronk JT (2005a) Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain. FEMS Yeast Res 5:925–934

    Article  Google Scholar 

  • Kuyper M, Hartog MM, Toirkens MJ, Almering MJ, Winkler AA, van Dijken JP, Pronk JT (2005b) Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation. FEMS Yeast Res 5:399–409

    Article  Google Scholar 

  • Lange A, Becker J, Schulze D, Cahoreau E, Portais J-C, Haefner S, Schröder H, Krawczyk J, Zelder O, Wittmann C (2017) Bio-based succinate from sucrose: high-resolution 13C metabolic flux analysis and metabolic engineering of the rumen bacterium Basfia succiniciproducens. Metab Eng 44:198–212

    Article  Google Scholar 

  • Leandro MJ, Gonçalves P, Spencer-Martins I (2006) Two glucose/xylose transporter genes from the yeast Candida intermedia: first molecular characterization of a yeast xylose-H+ symporter. Biochem J 395:543–549

    Article  Google Scholar 

  • Leavell MD, McPhee, DJ, Paddon CJ (2016) Developing fermentative terpenoid production for commercial usage. Curr Opin Biotechnol 37:114–119

    Article  Google Scholar 

  • Lee PC, Lee SY, Hong SH, Chang HN, Park SC (2003) Biological conversion of wood hydrolysate to succinic acid by Anaerobiospirillum succiniciproducens. Biotechnol Lett 25:111–114

    Article  Google Scholar 

  • Lee SH, Yun EJ, Kim J, Lee SJ, Um Y, Kim KH (2016) Biomass, strain engineering, and fermentation processes for butanol production by solventogenic clostridia. Appl Microbiol Biotechnol 100:8255–8271

    Article  Google Scholar 

  • Li Y, Ge X (2016) Advances in bioenergy, vol 1, 1st edn. Academic Press, New York

    Google Scholar 

  • Li Q, Xing J (2015) Microbial succinic acid production using different bacteria species. In: Kamm B (ed) Microorganisms in biorefineries, Microbiology monographs, vol 26. Springer, Berlin

    Google Scholar 

  • Mans R, Daran JG, Pronk JT (2018) Under pressure: evolutionary engineering of yeast strains for improved performance in fuels and chemicals production. Curr Opin Biotechnol 50:47–56

    Article  Google Scholar 

  • McKinlay JB, Shachar-Hill Y, Zeikus JG, Vieille C (2007) Determining Actinobacillus succinogenes metabolic pathways and fluxes by NMR and GC-MS analyses of C-13-labeled metabolic product isotopomers. Metab Eng 9:177–192

    Article  Google Scholar 

  • McPhee D, Pin A, Kizer L, Perelman L (2014) Squalane from sugarcane. Cosmetics & Toiletries magazine 129(6)

    Google Scholar 

  • Meadows AL, Hawkins KM, Tsegaye Y, Antipov E, Kim Y, Raetz L, Dahl RH, Tai A, Mahatdejkul-Meadows T, Xu L, Zhao L, Dasika MS, Murarka A, Lenihan J, Eng D, Leng JS, Liu CL, Wenger JV, Jiang H, Chao L, Westfall P, Lai J, Ganesan S, Jackson P, Mans R, Platt D, Reeves CD, Saija PR, Wichmann G, Holmes VF, Benjamin K, Hill PW, Gardner TS, Tsong AE (2016) Rewriting yeast central carbon metabolism for industrial isoprenoid production. Nature 537:694

    Article  Google Scholar 

  • Medina VG, Almering MJ, van Maris AJ, Pronk JT (2010) Elimination of glycerol production in anaerobic cultures of a Saccharomyces cerevisiae strain engineered to use acetic acid as an electron acceptor. Appl Environ Microbiol 76:190–195

    Article  Google Scholar 

  • Mitrovich Q, Wichmann G (2017) Integrated process for production of farnesene, a versatile platform chemical, from domestic lignocellulosic feedstock. Presentation at the U.S. Department of Energy (DOE) Bioenergy Technologies Office (BETO) 2017 Project Peer Review

    Google Scholar 

  • Mordor Intelligence (2018) Surfactants market—segmented by origin, type, application, and geography—growth, trends and forecasts (2019–2024). https://www.mordorintelligence.com/industry-reports/global-market-for-surfactants-industry

  • Morita T, Fukuoka T, Imura T, Kitamoto D (2015) Mannosylerythritol lipids: production and application. J Oleo Sci 64:133–141

    Article  Google Scholar 

  • Morlon-Guyot J, Guyot JP, Pot B, Jacobe de Haut I, Raimbault M (1998) Lactobacillus manihotivorans sp. nov., a new starch-hydrolyzing lactic acid bacterium isolated from cassava sour starch fermentation. Int J Syst Bacteriol 48:1101–1109

    Article  Google Scholar 

  • Moysés DN, Reis VCB, de Almeida JRM, de Moraes LMP, Torres FAG (2016) Xylose fermentation by Saccharomyces cerevisiae: challenges and prospects. Int J Mol Sci 17(3):207

    Article  Google Scholar 

  • Murali N, Srinivas K, Ahring BK (2017) Biochemical production and separation of carboxylic acids for biorefinery applications. Fermentation 3:22

    Article  Google Scholar 

  • Nag A (2008) Biofuels refining and performance. McGraw Hill, New York

    Google Scholar 

  • Ndaba B, Chiyanzu I, Marx S (2015) n-Butanol derived from biochemical and chemical routes: a review. Biotechnol Rep 8:1–9

    Article  Google Scholar 

  • Nghiem NP, Kleff S, Schwegmann S (2017) Succinic acid: technology development and commercialization. Fermentation 3:26

    Article  Google Scholar 

  • Nitschke M, Silva SS (2017) Recent food applications of microbial surfactants. Crit Rev Food Sci Nutr 58(4):631–638

    Article  Google Scholar 

  • Nwankwo D, Anadu E, Usoro R (1989) Cassava fermenting organisms. MIRCEN J 5:169–179

    Article  Google Scholar 

  • Obruca S, Benesova P, Marsalek L, Marovaa I (2015) Use of lignocellulosic materials for PHA production. Chem Biochem Eng Q 29(2):135–144

    Article  Google Scholar 

  • Palmqvist E, Hahn-Hägerdal B (2000) Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresour Technol 74(1):25–33

    Article  Google Scholar 

  • Peralta-Yahya PP, Zhang F, del Cardayre SB, Keasling JD (2012) Microbial engineering for the production of advanced biofuels. Nature 488:320

    Article  Google Scholar 

  • Qureshi N, Ezeji TC (2008) Butanol, ‘a superior biofuel’ production from agricultural residues (renewable biomass): recent progress in technology. Biofuels Bioprod Biorefin 2:319–330

    Article  Google Scholar 

  • Raab AM, Lang C (2011) Oxidative versus reductive succinic acid production in the yeast Saccharomyces cerevisiae. Bioeng Bugs 2(2):120–123

    Article  Google Scholar 

  • Reddy G, Altaf M, Naveena BJ, Venkateshwar M, Vijay Kumar E (2008) Amylolytic bacterial lactic acid fermentation—a review. Biotechnol Adv 26:22–34

    Article  Google Scholar 

  • Report of Transparency Market Research (2011) BioSurfactants Market: Global Scenario, Raw Material and Consumption Trends, Industry Analysis, Size, Share and Forecasts, 2011 – 2018. http://www.sbdi.co.kr/cart/data/info/Transparency_Biosurfactants_Market_Sample.pdf. Accessed 31 May 2018

  • Roelants SL, Saerens KM, Derycke T, Li B, Lin YC, van de Peer Y, de Maeseneire SL, van Bogaert IN, Soetaert W (2013) Candida bombicola as a platform organism for the production of tailor-made biomolecules. Biotechnol Bioeng 110:2494–2503

    Article  Google Scholar 

  • Roelants SLKW, Ciesielska K, de Maeseneire SL, Moens H, Everaert B, Verweire S, Denon Q, Vanlerberghe B, van Bogaert INA, van der Meeren P, Devreese B, Soetaert W (2016) Towards the industrialization of new biosurfactants: biotechnological opportunities for the lactone esterase gene from Starmerella bombicola. Biotechnol Bioeng 113:550–559

    Article  Google Scholar 

  • Rooke JA, Hatfield RD (2003) Biochemistry of ensiling. In Silage science and technology. Edited by Buxton DR, Muck RE, Harrison JH, Madison, Wisconsin. USA: American Society of Agronomy, Crop Science Society of America, Soil Science Society of America; 95–140

    Google Scholar 

  • Rubber Journal of Asia (RJA) (2017) Kuraray’s liquid farnesene rubber used in SRI tyres for the first time. http://rubberjournalasia.com/kurarays-liquid-farnesene-rubber-used-in-sri-tyres-for-the-first-time/. Accessed Jan 2018

  • Ryan C (2018) An overview of Gevo’s biobased isobutanol production process. https://gevo.com/wp-content/uploads/2018/02/isobutanol-process.pdf. Accessed Apr 2018

  • Sachdev DP, Cameotra SS (2013) Biosurfactants in agriculture. Appl Microbiol Biotechnol 97:1005–1016

    Article  Google Scholar 

  • Sajna KV, Höfer R, Sukumaran RK, Gottumukkala LD, Pandey A (2015) White biotechnology in biosurfactants. In: Pandey A, Hofer R, Larroche C, Taherzadeh M, Nampoothiri M (eds) Industrial biorefineries & white biotechnology. Ch. 14. Elsevier B.V., Amsterdam, pp 499–521

    Chapter  Google Scholar 

  • Sauer M (2016) Industrial production of acetone and butanol by fermentation—100 years later. FEMS Microbiol Lett 363(13)

    Article  Google Scholar 

  • Schadeweg V, Boles E (2016) n-Butanol production in Saccharomyces cerevisiae is limited by the availability of coenzyme A and cytosolic acetyl-CoA. Biotechnol Biofuels 9:44

    Article  Google Scholar 

  • Schiel-Bengelsdorf B, Montoya J, Linder S, Dürre P (2013) Butanol fermentation. Environ Technol 34:13–14

    Article  Google Scholar 

  • Scott MJ, Jones MN (2000) The biodegradation of surfactants in the environment. Biochim Biophys Acta 1508:235–251

    Article  Google Scholar 

  • Song H, Lee SY (2006) Review: production of succinic acid by bacterial fermentation. Enzyme Microb Technol 39:352–361

    Article  Google Scholar 

  • Souza EC, Vessoni-Penna TC, de Souza Oliveira RP (2014) Biosurfactant-enhanced hydrocarbon bioremediation: an overview. Int Biodeter Biodegr 89:88–94

    Article  Google Scholar 

  • Swidah R, Wang H, Reid PJ, Ahmed HZ, Pisanelli AM, Persaud KC, Grant CM, Ashe MP (2015) Butanol production in S. cerevisiae via a synthetic ABE pathway is enhanced by specific metabolic engineering and butanol resistance. Biotechnol Biofuels 8:97

    Article  Google Scholar 

  • Tan J, Abdel-Rahman MA, Sonomoto K (2017) Biorefinery-based lactic acid fermentation: microbial production of pure monomer product. Adv Polym Sci 279:27–66

    Article  Google Scholar 

  • Träff KL, Otero Cordero RR, van Zyl WH, Hahn-Hägerdal B (2001) Deletion of the GRE3 aldose reductase gene and its influence on xylose metabolism in recombinant strains of Saccharomyces cerevisiae expressing the xylA and XKS1 genes. Appl Environ Microbiol 67:5668–5674

    Article  Google Scholar 

  • van Zyl WH, Lynd LR, den Haan R, McBride JE (2007) Consolidated bioprocessing for bioethanol production using Saccharomyces cerevisiae. Adv Biochem Eng Biotechnol 108:205–235

    Google Scholar 

  • Vaswani S (2010) Bio based succinic acid. Review no. 2010-14. Report by Process Economics Program, SRI Consulting

    Google Scholar 

  • Vecino X, Cruz JM, Moldes AB, Rodrigues LR (2017) Biosurfactants in cosmetic formulations: trends and challenges. Crit Rev Biotechnol 37(7):911–923

    Article  Google Scholar 

  • Wang Y, Yin J, Chen GQ (2014) Polyhydroxyalkanoates, challenges and opportunities. Curr Opin Biotechnol 30:59–65

    Article  Google Scholar 

  • Wee YJ, Kim JN, Ryu HW (2006) Biotechnological production of lactic acid. Food Technol Biotechnol 44(2):163–172

    Google Scholar 

  • Wisselink HW, Toirkens MJ, Wu Q, Pronk JT, van Maris AJ (2009) Novel evolutionary engineering approach for accelerated utilization of glucose, xylose, and arabinose mixtures by engineered Saccharomyces cerevisiae strains. Appl Environ Microbiol 75:907–914

    Article  Google Scholar 

  • Wyman CE (1996) Handbook on bioethanol—production and utilization. Taylor & Francis, Washington, DC

    Google Scholar 

  • Wyman CE, Dale BE (2015) Producing biofuels via the sugar platform. American Institute of Chemical Engineers (AIChE). www.aiche.org/cep. Accessed Mar 2018

  • Xin F, Chen T, Jiang Y, Dong W, Zhang W, Zhang M, Wu H (2017) Strategies for improved isopropanol–butanol production by a Clostridium strain from glucose and hemicellulose through consolidated bioprocessing. Biotechnol Biofuels 10:118

    Article  Google Scholar 

  • Xu H, Kim S, Sorek H, Lee Y, Jeong D, Kim J, Oh EJ, Yun EJ, Wemmer DE, Kim KH, Kim SR, Jin YS (2016) PHO13 deletion-induced transcriptional activation prevents sedoheptulose accumulation during xylose metabolism in engineered Saccharomyces cerevisiae. Metab Eng 34:88–96

    Article  Google Scholar 

  • Yang L, Lübeck M, Ahring BK, Lübeck P (2016) Enhanced succinic acid production in Aspergillus saccharolyticus by heterologous expression of fumarate reductase from Trypanosoma brucei. Appl Microbiol Biotechnol 100:1799–1809

    Article  Google Scholar 

  • Zhao J, Lu C, Chen CC, Yang ST (2013) Biological production of butanol and higher alcohols. In: Yang ST, El-Enshasy HA, Thongchul N (eds) Bioprocessing technologies in biorefinery for sustainable production of fuels, chemicals, and polymers. Wiley, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zsófia Kádár .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kádár, Z., Fonseca, C. (2019). Bio-Products from Sugar-Based Fermentation Processes. In: Bastidas-Oyanedel, JR., Schmidt, J. (eds) Biorefinery. Springer, Cham. https://doi.org/10.1007/978-3-030-10961-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10961-5_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10960-8

  • Online ISBN: 978-3-030-10961-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics