Skip to main content

A Background-Calibrated Digital Subsampling Polar Transmitter

  • Chapter
  • First Online:
  • 783 Accesses

Part of the book series: Analog Circuits and Signal Processing ((ACSP))

Abstract

In this chapter we present a transmitter, implemented in 28 nm CMOS, which incorporates a low-noise subsampling PLL for phase modulation (PM) and a harmonic rejection mixed inverse class-D digital power amplifier for amplitude modulation (AM). Unlike in a classical polar transmitter, the amplitude modulation happens within the phase lock in this system. As shown throughout the chapter, this specific feature enables background AM-to-AM nonlinearity cancellation, and inherits suppression of AM-to-PM induced distortion. To emphasize this specific property which is a consequence of direct sampling at the transmitter output, we name the architecture subsampling polar transmitter (SSPTX). The chip operates from a 0.9 V supply at 5.5 GHz with 2.5 MHz BW and 1024 QAM with average 1.1 dBm output power, and total power consumption of 50 mW. The proposed SSPTX enables extreme spectral efficiency, outperforming similar art in the field. The explored architecture reveals new opportunities in digital TX solutions for next generation wireless links.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    An obvious way to improve the far-out noise is to use a higher clock speed for the phase modulating DAC, more than the 40 MHz crystal oscillator reference used now.

  2. 2.

    Theoretically this clipping can still appear, however, it is statistically a very rare event that does not influence the average EVM.

  3. 3.

    FOMPLL = \(10\log _{10}\left [\left (\frac {\text{P}_{\text{DC}}}{1 \text{mW}}\right )\left ( \frac {\text{RMS}_{\text{jitter}}}{1 \text{s}} \right )^2\right ]\) as defined in [Gao09a].

References

  1. A. Ba, Y.-H. Liu, J. van den Heuvel, P. Mateman, B. Büsze, J. Dijkhuis, C. Bachmann, G. Dolmans, K. Philips, H. De Groot, A 1.3 nJ/b IEEE 802.11 ah fully-digital polar transmitter for IoT applications. IEEE J. Solid State Circuits 51(12), 3103–3113 (2016)

    Article  Google Scholar 

  2. Z. Boos, A. Menkhoff, F. Kuttner, M. Schimper, J. Moreira, H. Geltinger, T. Gossmann, P. Pfann, A. Belitzer, T. Bauernfeind, A fully digital multimode polar transmitter employing 17b RF DAC in 3G mode, in Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2011 IEEE International (IEEE, San Francisco, 2011), pp. 376–378.

    Google Scholar 

  3. D. Chowdhury, L. Ye, E. Alon, A. M. Niknejad, An efficient mixed-signal 2.4-GHz polar power amplifier in 65-nm CMOS technology. IEEE J. Solid State Circuits 46(8), 1796–1809 (2011)

    Article  Google Scholar 

  4. D. Chowdhury, S.V. Thyagarajan, L. Ye, E. Alon, A. Niknejad, A fully-integrated efficient CMOS inverse class-D power amplifier for digital polar transmitters. IEEE J. Solid State Circuits 47(5), 1113–1122 (2012)

    Article  Google Scholar 

  5. M. Fulde, A. Belitzer, Z. Boos, M. Bruennert, J. Fritzin, H. Geltinger, M. Groinig, D. Gruber, S. Gruenberger, T. Hartig et al., 13.2 A digital multimode polar transmitter supporting 40MHz LTE Carrier Aggregation in 28nm CMOS, in Solid-State Circuits Conference (ISSCC), 2017 IEEE International (IEEE, San Francisco, 2017), pp. 218–219

    Google Scholar 

  6. X. Gao, E. Klumperink, M. Bohsali, B. Nauta, A low noise sub-sampling PLL in which divider noise is eliminated and PD/CP noise is not multiplied by N 2. IEEE J. Solid State Circuits 44(12), 3253–3263 (2009)

    Article  Google Scholar 

  7. X. Gao, E. Klumperink, P. Geraedts, B. Nauta, Jitter analysis and a benchmarking figure-of-merit for phase-locked loops. IEEE Trans. Circuits Syst. Express Briefs 56(2), 117–121 (2009)

    Article  Google Scholar 

  8. X. Gao, E. Klumperink, G. Socci, M. Bohsali, B. Nauta, Spur reduction techniques for phase-locked loops exploiting a sub-sampling phase detector. IEEE J. Solid State Circuits 45(9), 1809–1821 (2010)

    Article  Google Scholar 

  9. X. Gao, E. Klumperink, B. Nauta, Sub-sampling PLL techniques, in Custom Integrated Circuits Conference (CICC), 2015 IEEE (IEEE, San Jose, 2015), pp. 1–8

    Google Scholar 

  10. B. Hershberg, K. Raczkowski, K. Vaesen, J. Craninckx, A 9.1–12.7 GHz VCO in 28nm CMOS with a bottom-pinning bias technique for digital varactor stress reduction, in European Solid State Circuits Conference (ESSCIRC), ESSCIRC 2014-40th (IEEE, Venice Lido, 2014), pp. 83–86

    Google Scholar 

  11. S. Levantino, G. Marzin, C. Samori, An adaptive pre-distortion technique to mitigate the DTC nonlinearity in digital PLLs. IEEE J. Solid State Circuits 49(8), 1762–1772 (2014)

    Article  Google Scholar 

  12. F. Lin, P.-I. Mak, R. P. Martins, A sine-LO square-law harmonic-rejection mixer-theory, implementation, and application. IEEE Trans. Microwave Theory Tech. 62(2), 313–322 (2014)

    Article  Google Scholar 

  13. P. Madoglio, H. Xu, K. Chandrashekar, L. Cuellar, M. Faisal, W.Y. Li, H.S. Kim, K.M. Nguyen, Y. Tan, B. Carlton et al., 13.6 A 2.4 GHz WLAN digital polar transmitter with synthesized digital-to-time converter in 14nm trigate/FinFET technology for IoT and wearable applications, in Solid-State Circuits Conference (ISSCC), 2017 IEEE International (IEEE, San Francisco, 2017), pp. 226–227

    Google Scholar 

  14. B. Malki, B. Verbruggen, E. Martens, P. Wambacq, J. Craninckx, A 150 kHz–80 MHz BW discrete-time analog baseband for software-defined-radio receivers using a 5th-Order IIR LPF, active FIR and a 10 bit 300 MS/s ADC in 28 nm CMOS. IEEE J. Solid State Circuits 51(7), 1593–1606 (2016)

    Article  Google Scholar 

  15. N. Markulic, K. Raczkowski, P. Wambacq, J. Craninckx, A 10-bit, 550-fs step digital-to-time converter in 28nm CMOS, in ESSCIRC 2014—40th European Solid State Circuits Conference (ESSCIRC) (IEEE, Venice Lido, Sept 2014), pp. 79–82

    Book  Google Scholar 

  16. N. Markulic, K. Raczkowski, E. Martens, P.E.P. Filho, B. Hershberg, P. Wambacq, J. Craninckx, 9.7 A self-calibrated 10Mb/s phase modulator with −37.4dB EVM based on a 10.1-to-12.4GHz, −246.6dB-FOM, fractional-N subsampling PLL, in 2016 IEEE International Solid-State Circuits Conference (ISSCC) (IEEE, San Francisco, Jan 2016), pp. 176–177

    Google Scholar 

  17. N. Markulic, K. Raczkowski, E. Martens, P.E. Paro Filho, B. Hershberg, P. Wambacq, J. Craninckx, A DTC-based subsampling PLL capable of self-calibrated fractional synthesis and two-point modulation. IEEE J. Solid State Circuits 51(12), 3078–3092 (2016)

    Article  Google Scholar 

  18. G. Marzin, S. Levantino, C. Samori, A. L. Lacaita, A 20 Mb/s phase modulator based on a 3.6 GHz digital PLL with −36 dB EVM at 5 mW power. IEEE J. Solid State Circuits 47(12), 2974–2988 (2012)

    Article  Google Scholar 

  19. G. Marzin, S. Levantino, C. Samori, A. L. Lacaita, 2.9 A background calibration technique to control bandwidth in digital PLLs, in Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2014 IEEE International (IEEE, San Francisco, 2014), pp. 54–55

    Google Scholar 

  20. E. Mensink, E.A. Klumperink, B. Nauta, Distortion cancellation by polyphase multipath circuits. IEEE Trans. Circuits Syst. Regul. Pap. 52(9), 1785–1794 (2005)

    Article  Google Scholar 

  21. K. Raczkowski, N. Markulic, B. Hershberg, J. Craninckx, A 9.2–12.7 GHz wideband fractional-N subsampling PLL in 28 nm CMOS with 280 fs RMS jitter. IEEE J. Solid State Circuits 50(5), 1203–1213 (2015)

    Article  Google Scholar 

  22. D. Tasca, M. Zanuso, G. Marzin, S. Levantino, C. Samori, A. Lacaita, A 2.9–4.0-GHz fractional-N digital PLL with bang-bang phase detector and 560-fs RMS integrated jitter at 4.5-mW power. IEEE J. Solid State Circuits 46(12), 2745–2758 (2011)

    Article  Google Scholar 

  23. A. Van Den Bosch, M. Steyaert, W. Sansen, Static and Dynamic Performance Limitations for High Speed D/A Converters, vol. 761. (Springer Science & Business Media, New York, 2013)

    Google Scholar 

  24. J.A. Weldon, R.S. Narayanaswami, J.C. Rudell, L. Lin, M. Otsuka, S. Dedieu, L. Tee, K.-C. Tsai, C.-W. Lee, P.R. Gray, A 1.75-GHz highly integrated narrow-band CMOS transmitter with harmonic-rejection mixers. IEEE J. Solid State Circuits 36(12), 2003–2015 (2001)

    Article  Google Scholar 

  25. Working Group of the 802 Committee and others, Draft Standard for Information Technology Telecommunications and information exchange between systems–Local and metropolitan area networks–Specific Requirements, IEEE P802.11ax/D1.4 (August 2017)

    Google Scholar 

  26. S.-M. Yoo, J.S. Walling, E.C. Woo, B. Jann, D.J. Allstot, A switched-capacitor RF power amplifier. IEEE J. Solid State Circuits 46(12), 2977–2987 (2011)

    Article  Google Scholar 

  27. S.-M. Yoo, J.S. Walling, O. Degani, B. Jann, R. Sadhwani, J.C. Rudell, D.J. Allstot, A class-G switched-capacitor RF power amplifier. IEEE J. Solid State Circuits 48(5), 1212–1224 (2013)

    Article  Google Scholar 

  28. S. Zheng, H.C. Luong, A WCDMA/WLAN digital polar transmitter with low-noise ADPLL, wideband PM/AM modulator, and linearized PA. IEEE J. Solid State Circuits 50(7), 1645–1656 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Markulic, N., Raczkowski, K., Craninckx, J., Wambacq, P. (2019). A Background-Calibrated Digital Subsampling Polar Transmitter. In: Digital Subsampling Phase Lock Techniques for Frequency Synthesis and Polar Transmission. Analog Circuits and Signal Processing. Springer, Cham. https://doi.org/10.1007/978-3-030-10958-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10958-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10957-8

  • Online ISBN: 978-3-030-10958-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics