Skip to main content

The Mechanisms of How Genomic Heterogeneity Impacts Bio-Emergent Properties: The Challenges for Precision Medicine

  • Chapter
  • First Online:
Book cover Embracing Complexity in Health

Abstract

While the promise of precision medicine has generated excitement and high expectations, there are challenges for some key assumptions on which the concept is based. Since most common and complex diseases belong to adaptive systems where fuzzy inheritance interacts with the dynamic environment during nonlinear somatic cell evolution, both disease progression and treatment response are less predictable if based only on the precision of gene profiles. Although increased voices have expressed their concerns for this neo-reductionist approach (reduction based on big data), few have directly studied the conceptual limitations of precision medicine. In this chapter, we will focus on the relationship between bio-heterogeneity and emergent properties, a subject crucial to understanding why the targeting of lower-level agents (genes and pathways) provides unsatisfactory results at higher levels of this system such as clinical outcomes, which is practically the ultimate goal. Such analyses illustrate that dynamic interactions of heterogeneity in lower-level agents lead to the unpredictability of complex adaptive systems. As a result, stress-induced multiple genomic heterogeneity-mediated evolutionary processes present the greatest challenges for precision medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Endoplasmic reticulum.

  2. 2.

    Mitochondrial DNA.

  3. 3.

    Homologous recombination: a type of genetic recombination in which nucleotide sequences are exchanged between two similar or identical molecules of DNA, particularly to repair DNA damage affecting both strands of the double helix.

References

  1. Heng HH. The genome-centric concept: resynthesis of evolutionary theory. Bioessays. 2009;31(5):512–25.

    Article  PubMed  Google Scholar 

  2. Heng HH. Cancer genome sequencing: the challenges ahead. Bioessays. 2007:29(8):783–94.

    Article  PubMed  Google Scholar 

  3. Heng HH. Debating cancer: the paradox in cancer research. Hackensack, NJ: World Scientific; 2015.

    Book  Google Scholar 

  4. Heng HH, Stevens JB, Liu G, Bremer SW, Ye KJ, Reddy PV, et al. Stochastic cancer progression driven by non-clonal chromosome aberrations. J Cell Physiol. 2006;208(2):461–72.

    Article  CAS  PubMed  Google Scholar 

  5. Heng HH. The conflict between complex systems and reductionism. JAMA. 2008;300(13):1580–1.

    Article  CAS  PubMed  Google Scholar 

  6. Kolodkin A, Simeonidis E, Westerhoff HV. Computing life: add logos to biology and bios to physics. Prog Biophys Mol Biol. 2014;111(2–3):69–74.

    Google Scholar 

  7. Heng HH, Bremer SW, Stevens JB, Horne SD, Liu G, Abdallah BY, et al. Chromosomal instability (CIN): what it is and why it is crucial to cancer evolution. Cancer Metastasis Rev. 2013;32(3–4):325–40.

    Article  PubMed  Google Scholar 

  8. Heng HH, Liu G, Stevens JB, Bremer SW, Ye KJ, Abdallah BY, et al. Decoding the genome beyond sequencing: the new phase of genomic research. Genomics. 2011;98(4):242–52.

    Article  CAS  PubMed  Google Scholar 

  9. Heng HH, Liu G, Stevens JB, Abdallah BY, Horne SD, Ye KJ, et al. Karyotype heterogeneity and unclassified chromosomal abnormalities. Cytogenet Genome Res. 2013;139(3):144–57.

    Article  CAS  PubMed  Google Scholar 

  10. Heng HH, Regan SM, Liu G, Ye CJ. Why it is crucial to analyze non clonal chromosome aberrations or NCCAs? Mol Cytogenet. 2016;9:15.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ye CJ, Regan S, Liu G, Alemara S, Heng HH. Understanding aneuploidy in cancer through the lens of system inheritance, fuzzy inheritance and emergence of new genome systems. Mol Cytogenet. 2018;11:31.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ye CJ, Liu G, Bremer SW, Heng HH. The dynamics of cancer chromosomes and genomes. Cytogenet. Genome Res. 2007;118(2–4):237–46.

    Article  CAS  PubMed  Google Scholar 

  13. Heng HH. Genome chaos: rethinking genetics, evolution, and molecular medicine. Cambridge: Academic Press; 2019.

    Google Scholar 

  14. Liu G, Ye CJ, Chowdhury SK, Abdallah BY, Horne SD, Nichols D, et al. Detecting chromosome condensation defects in Gulf war illness patients. Curr Genet. 2018;19(3):200–6.

    Article  CAS  Google Scholar 

  15. Heng HH, Liu G, Regan S, Ye CJ. Linking Gulf war illness to genome instability, somatic evolution, and complex adaptive systems. In: Sturmberg J, editor. Putting systems and complexity sciences into practice. Cham: Springer; 2018. p. 83–95.

    Chapter  Google Scholar 

  16. Wallace DC, Chalkia D. Mitochondrial DNA genetics and the heteroplasmy conundrum in evolution and disease. Cold Spring Harb Perspect Biol. 2013;5(11):a021220.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Picard M, Zhang J, Hancock S, Derbeneva O, Golhar R, Golik P, et al. Progressive increase in mtDNA 3243A> G heteroplasmy causes abrupt transcriptional reprogramming. Proc Natl Acad Sci USA. 2014;111(38):E4033–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Abdallah BY, Horne SD, Stevens JB, Liu G, Ying AY, Vanderhyden B, et al. Single cell heterogeneity: why unstable genomes are incompatible with average profiles. Cell Cycle 2013;12(23):3640–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liu G, Stevens JB, Horne SD, Abdallah BY, Ye KJ, Bremer SW, et al. Genome chaos: survival strategy during crisis. Cell Cycle. 2014;13(4):528–37.

    Article  CAS  PubMed  Google Scholar 

  20. Ye CJ, Liu G, Heng HH. Experimental induction of genome chaos. Methods Mol. Biol. 2018;1769:337–52.

    Google Scholar 

  21. Pal J, Nanjappa P, Kumar S, Shi J, Buon L, Munshi NC, et al. Impact of RAD51C-mediated homologous recombination on genomic integrity in Barrett’s adenocarcinoma cells. J Gastroenterol Hepatol Res. 2017;6(1):2286–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Stephens PJ, Greenman CD, Fu B, Yang F, Bignell GR, Mudie LJ, et al. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell. 2011;144(1):27–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Baca SC, Prandi D, Lawrence MS, Mosquera JM, Romanel A, Drier Y, et al. Punctuated evolution of prostate cancer genomes. Cell. 2013;153(3):666–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Luo J, Sun X, Cormack BP, Boeke JD. Karyotype engineering by chromosome fusion leads to reproductive isolation in yeast. Nature. 2018;560(7718):392–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shao Y, Lu N, Wu Z, Cai C, Wang S, Zhang LL, et al. Creating a functional single-chromosome yeast. Nature. 2018;560(7718):331–5.

    Article  CAS  PubMed  Google Scholar 

  26. Heppner GH, Miller BE. Therapeutic implications of tumor heterogeneity. Semin Oncol. 1989;16(2):91–105.

    CAS  PubMed  Google Scholar 

  27. Cleary AS, Leonard TL, Gestl SA, Gunther EJ. Tumour cell heterogeneity maintained by cooperating subclones in Wnt-driven mammary cancers. Nature. 2014;508(7494):113–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Campbell K, Vowinckel J, Ralser M. Cell-to-cell heterogeneity emerges as consequence of metabolic cooperation in a synthetic yeast community. Biotechnol J 2016;11(9):1169–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Heng HH. Heterogeneity-mediated cellular adaptation and its trade-off: searching for the general principles of diseases. J Eval Clin Pract. 2017;23(1):233–7.

    Article  PubMed  Google Scholar 

  30. Horne SD, Chowdhury SK, Heng HH. Stress, genomic adaptation, and the evolutionary trade-off. Front Genet. 2014;5:92.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Heng HH, Regan S, Ye CJ. Genotype, environment, and evolutionary mechanism of diseases. Environ Dis. 2016;1(1):14–23.

    Article  Google Scholar 

  32. Collins FS, Varmus H. A new initiative on precision medicine. N Engl J Med. 2015;372(9):793–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Heng HH. Bio-complexity challenging reductionism. In: Sturmberg JS, Martin CM, editors. Handbook of systems and complexity in health. New York: Springer; 2013. p. 193–208.

    Chapter  Google Scholar 

  34. Sturmberg JS, Martin CM, editors. Handbook of systems and complexity in health. New York: Springer; 2013.

    Google Scholar 

  35. Sturmberg JP, Bennett JM, Martin CM, Picard M. ‘Multimorbidity’ as the manifestation of network disturbances. J Eval Clin Pract. 2017;23(1):199–208.

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

This chapter is part of a series of studies entitled “The mechanisms of somatic cell and organismal evolution.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henry H. Heng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Heng, H.H., Liu, G., Alemara, S., Regan, S., Armstrong, Z., Ye, C.J. (2019). The Mechanisms of How Genomic Heterogeneity Impacts Bio-Emergent Properties: The Challenges for Precision Medicine. In: Sturmberg, J. (eds) Embracing Complexity in Health. Springer, Cham. https://doi.org/10.1007/978-3-030-10940-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10940-0_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10939-4

  • Online ISBN: 978-3-030-10940-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics