Skip to main content

Fail Small, Fail Often: An Outsider’s View of Physiologic Complexity

  • Chapter
  • First Online:
Embracing Complexity in Health
  • 557 Accesses

Abstract

We examine the hypothesis that the robustness of physiological time series results from allowing the underlying process to fail in small ways, and on a fairly regular basis. The notion of controlling such complex time series by suppressing their natural variability is argued to increase the likelihood of failure being catastrophic when it does occur. We also examine the hypothesis that the statistics of heart rate variability (HRV) are given by a tempered Lévy probability density function. Herein, we use the fractional probability calculus to frame our arguments as a new way to understand complex physiological dynamics. A self-induced nonlinear control is shown to induce a tempered Lévy process and is consistent with the hypothesis of disease being the loss of physiologic complexity made over 25 years ago.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bernard C. Introduction to experimental medicine. New York: Dover Publications; 1865.

    Google Scholar 

  2. Cannon WB. The wisdom of the body. New York: W W Norton & Co.; 1932.

    Book  Google Scholar 

  3. Peng C-K, Mietus J, Hausdorff JM, Havlin S, Stanley HE, Goldberger AL. Long-range anticorrelations and non-Gaussian behavior of the heartbeat. Phys Rev Lett. 1993;70(9):1343–6.

    Article  Google Scholar 

  4. Goldberger AL, West BJ. Fractals in physiology and medicine. Yale J Biol Med. 1987;60(5):421–35 and references therein.

    Google Scholar 

  5. Shlesinger MF, West BJ. Asymmetric branching of the mammalian lung. Phys Rev Lett. 1991;67:2106.

    Article  CAS  Google Scholar 

  6. West BJ. Fractal physiology and chaos in medicine, 2nd ed. New Jersey: World Scientific; 2013.

    Book  Google Scholar 

  7. Hausdorff JF, Peng CK, Ladin Z, Ladin JY, Wei JY, Goldberger AL. Is walking a random walk? Evidence for long-range correlations in stride interval of human gait. J Appl Physiol. 1995;78(1):349–58.

    Article  CAS  Google Scholar 

  8. Griffin L, West DJ, West BJ. Random stride intervals with memory. J Biol Phys. 2000;26(3):185–202.

    Article  CAS  Google Scholar 

  9. Peng CK, Meus J, Li Y, Lee C, Hausdorff JM, Stanley HE, Goldberger AL, Lipsitz LA. Quantifying fractal dynamics of human respiration: age and gender effects. Ann Biomed Eng. 2002;30(5):683–92.

    Article  CAS  Google Scholar 

  10. West BJ, Griffin LA, Freerick HJ, Moon RE. The independently fractal nature of respiration and heart rate during exercise under normobaric and hyperbaric conditions. Respir Physiol Neurobiol. 2005;145(2–3):219–33.

    Article  Google Scholar 

  11. Costa MD, Peng CK, Goldberger AL. Multiscale analysis of heart rate dynamics: entropy and time irreversibility measures. Cardiovasc Eng. 2008;8(2):88–93.

    Article  Google Scholar 

  12. Yaniv Y, Lyaskov AE, Lakatta EG. The fractal-like complexity of heart rate variability beyond neurotransmitters and autonomic receptors: signaling intrinsic to sinoatrial node pacemaker cells. Cardiovasc Pharm Open Access. 2013;2:111.

    Article  Google Scholar 

  13. Goldberger AL, Rigney DR, West BJ. Chaos and fractals in human physiology. Sci Am. 1990;262(2):42–9.

    Article  CAS  Google Scholar 

  14. West BJ. Where medicine west wrong. Singapore: World Scientific; 2006.

    Book  Google Scholar 

  15. Bassigthwaighte JB, Liebowitch LS, West BJ. Fractal physiology. Oxford: Oxford University Press; 1994.

    Book  Google Scholar 

  16. Mandelbrot BB. Fractals, form, chance and dimension. San Francisco: W.H. Freeman & Co; 1977.

    Google Scholar 

  17. West BJ. A mathematics for medicine: the network effect. Front Physiol. 2014;5:456.

    Article  Google Scholar 

  18. Bacry E, Delour J, Muzy JF. Multifractal random walk. Phys Rev E. 2001;64(2):026103.

    Article  CAS  Google Scholar 

  19. West BJ. Fractional calculus view of complexity: tomorrow’s science. Boca Raton: CRC Press; 2016.

    Book  Google Scholar 

  20. West BJ, Latka M, Glaubic-Latka M, Latka D. Multifractality of cerebral blood flow. Physica A. 2003;318(3–4):453–60.

    Article  Google Scholar 

  21. Hayano J, Kiyono K, Struzik ZR, Yamamoto Y, Watanabe E, Stein PK, Watkins LL, Blumenthal JA, Carney RM. Increased non-Gaussianity of heart rate variability predicts cardiac mortality after an acute myocardial infarction. Front Physiol. 2011;2:65.

    Article  Google Scholar 

  22. Mora T, Bialek W. Are biological systems poised at criticality? J Stat Phys. 2011;144(2):268–302.

    Article  Google Scholar 

  23. Chechkin AV, Gonchar YY, Klafter J, Metzler R. Natural cutoff in Lévy caused by dissipative nonlinearity. Phys Rev E. 2005;72(1 Pt 1):010101.

    Article  Google Scholar 

  24. West BJ, Turalska M. Hypothetical control of HRV (under review).

    Google Scholar 

  25. Kiyono K, Struzik ZR, Aoyagi N, Sakata S, Hayano J, Yamamoto Y. Critical scale invariance in a healthy human heart rate. Phys Rev Lett. 2004;93(17):178103.

    Article  Google Scholar 

  26. Kiyono K, Struzik ZR, Aoyagi N, Yamamoto Y. Multiscale probability density function analysis: non-Gaussian and scale-invariant fluctuations of healthy human heart rate. IEEE Trans Biomed Eng. 2006;53(1):95–102.

    Article  Google Scholar 

  27. Taleb NN, Blyth M. The black swan of Cairo: how suppressing volatility makes the world less predictable and more dangerous. Foreign Aff. 2011;90(3):33–9.

    Google Scholar 

  28. Taleb NN. The black swan: the impact of the highly improbable. New York: Random House; 2007.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce J. West .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

West, B.J. (2019). Fail Small, Fail Often: An Outsider’s View of Physiologic Complexity. In: Sturmberg, J. (eds) Embracing Complexity in Health. Springer, Cham. https://doi.org/10.1007/978-3-030-10940-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10940-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10939-4

  • Online ISBN: 978-3-030-10940-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics