Skip to main content

Semilinear Damped Klein-Gordon Models with Time-Dependent Coefficients

  • Chapter
  • First Online:
New Tools for Nonlinear PDEs and Application

Part of the book series: Trends in Mathematics ((TM))

Abstract

We consider the following Cauchy problem for a wave equation with time-dependent damping term b(t)u t and mass term m(t)2 u, and a power nonlinearity |u|p:

$$\displaystyle \begin {cases} u_{tt}-\varDelta u+b(t)u_t+m^2(t)u=|u|{ }^p, & t\geq 0, \ x\in \mathbb R^n,\\ u(0,x)=f(x), \quad u_t(0,x)=g(x). \end {cases} $$

We discuss how the interplay between an effective time-dependent damping term and a time-dependent mass term influences the decay rate of the solution to the corresponding linear Cauchy problem, in the case in which the damping term is dominated by the mass term, i.e. liminft (m(t)∕b(t)) > 1∕4.

Then we use the obtained estimates of solutions to linear Cauchy problems to prove that a unique global in-time energy solution to the Cauchy problem with power nonlinearity |u|p at the right-hand side of the equation exists for any p > 1, assuming small data in the energy space (f, g) ∈ H 1 × L 2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. D’Abbicco, Small data solutions for semilinear wave equations with effective damping. Discret. Contin. Dyn. Syst. 183–191, Supplement (2013)

    Google Scholar 

  2. M. D’Abbicco, The threshold of effective damping for semilinear wave equations. Math. Methods Appl. Sci. 38(6), 1032–1045 (2015). http://dx.doi.org/10.1002/mma.3126

    Google Scholar 

  3. M. D’Abbicco, Asymptotics for damped evolution operators with mass-like terms. Complex Anal. Dyn. Syst. VI Contemp. Math. 653, 93–116 (2015). http://dx.doi.org/10.1090/conm/653/13181

    MathSciNet  MATH  Google Scholar 

  4. M. D’Abbicco, S. Lucente, A modified test function method for damped wave equations. Adv. Nonlinear Stud. 13, 867–892 (2013)

    Article  MathSciNet  Google Scholar 

  5. M. D’Abbicco, S. Lucente, NLWE with a special scale-invariant damping in odd space dimension. Discret. Contin. Dyn. Syst. AIMS Proc. 312–319 (2015). http://dx.doi.org/10.3934/proc.2015.0312

    Google Scholar 

  6. M. D’Abbicco, S. Lucente, M. Reissig, Semilinear wave equations with effective damping. Chinese Ann. Math. 34B(3), 345–380 (2013). http://dx.doi.org/10.1007/s11401-013-0773-0

    Article  Google Scholar 

  7. M. D’Abbicco, S. Lucente, M. Reissig, A shift in the critical exponent for semilinear wave equations with a not effective damping. J. Differ. Equ. 259, 5040–5073 (2015). http://dx.doi.org/10.1016/j.jde.2015.06.018

    Article  Google Scholar 

  8. M. D’Abbicco, G. Girardi, M. Reissig, A scale of critical exponents for semilinear waves with time-dependent damping and mass terms. Nonlinear Anal. 179, 15–40 (2019). https://doi.org/10.1016/j.na.2018.08.006

    Article  MathSciNet  Google Scholar 

  9. W.N. do Nascimento, A. Palmieri, M. Reissig, Semi-linear wave models with power non-linearity and scale invariant time-dependent mass and dissipation. Math. Nachr. 290, 1779–1805 (2017)

    Google Scholar 

  10. V. Georgiev, H. Lindblad, C.D. Sogge, Weighted Strichartz estimates and global existence for semilinear wave equations. Am. J. Math. 119, 1291–1319 (1997)

    Article  MathSciNet  Google Scholar 

  11. R. Ikehata, M. Ohta, Critical exponents for semilinear dissipative wave equations in \(\mathbb {R}^N\). J. Math. Anal. Appl. 269, 87–97 (2002)

    Google Scholar 

  12. M. Ikeda, M. Sobajima, Life-span of solutions to semilinear wave equation with time-dependent critical damping for specially localized initial data. M. Math. Ann. (2018). https://doi.org/10.1007/s00208-018-1664-1

  13. M. Ikeda, Y. Wakasugi, A remark on the global existence for the semi-linear damped wave equation in the overdamping case. arXiv:1708.08044 (2017)

    Google Scholar 

  14. R. Ikehata, Y. Mayaoka, T. Nakatake, Decay estimates of solutions for dissipative wave equations in \(\mathbb {R}^N\) with lower power nonlinearities. J. Math. Soc. Jpn. 56(2), 365–373 (2004)

    Google Scholar 

  15. F. John, Blow-up of solutions of nonlinear wave equations in three space dimensions. Manuscripta Math. 28, 235–268 (1979)

    Article  MathSciNet  Google Scholar 

  16. T.T. Li, Y. Zhou, Breakdown of solutions to \(\square u+u_t = |u|{ }^{1+\alpha }\). Discret. Contin. Dyn. Syst. 1, 503–520 (1995)

    Google Scholar 

  17. N.A. Lai, H. Takamura, K. Wakasa, Blow-up for semilinear wave equations with the scale invariant damping and super-Fujita exponent. J. Differ. Equ. 263, 5377–5394 (2017)

    Article  MathSciNet  Google Scholar 

  18. J. Lin, K. Nishihara, J. Zhai, Critical exponent for the semilinear wave equation with time-dependent damping. Discret. Contin. Dyn. Syst. 32(12), 4307–4320 (2012). http://dx.doi.org/10.3934/dcds.2012.32.4307

    Article  MathSciNet  Google Scholar 

  19. A. Matsumura, On the asymptotic behavior of solutions of semi-linear wave equations. Publ. RIMS. 12, 169–189 (1976)

    Article  MathSciNet  Google Scholar 

  20. K. Nishihara, Asymptotic behavior of solutions to the semilinear wave equation with time-dependent damping. Tokyo J. Math. 34, 327–343 (2011)

    Article  MathSciNet  Google Scholar 

  21. W. Strauss, Nonlinear scattering theory at low energy. J. Funct. Anal. 41, 110–133 (1981)

    Article  MathSciNet  Google Scholar 

  22. G. Todorova, B. Yordanov, Critical exponent for a nonlinear wave equation with damping. J. Differ. Equ. 174, 464–489 (2001)

    Article  MathSciNet  Google Scholar 

  23. Y. Wakasugi, Critical exponent for the semilinear wave equation with scale invariant damping, in Fourier Analysis ed. by M. Ruzhansky, V. Turunen (Trends in Mathematics, Springer, Basel, 2014), pp. 375–390

    Google Scholar 

  24. Y. Wakasugi, Scaling variables and asymptotic profiles for the semilinear damped wave equation with variable coefficients. J. Math. Anal. Appl. 447, 452–487 (2017)

    Article  MathSciNet  Google Scholar 

  25. J. Wirth, Wave equations with time-dependent dissipation II. Effective dissipation. J. Differ. Equ. 232, 74–103 (2007)

    Article  MathSciNet  Google Scholar 

  26. Q.S. Zhang, A blow-up result for a nonlinear wave equation with damping: the critical case. C. R. Acad. Sci. Paris Sér. I Math. 333, 109–114 (2001)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Girardi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Girardi, G. (2019). Semilinear Damped Klein-Gordon Models with Time-Dependent Coefficients. In: D'Abbicco, M., Ebert, M., Georgiev, V., Ozawa, T. (eds) New Tools for Nonlinear PDEs and Application. Trends in Mathematics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-10937-0_7

Download citation

Publish with us

Policies and ethics