Skip to main content

The Critical Exponent for Evolution Models with Power Non-linearity

  • Chapter
  • First Online:
New Tools for Nonlinear PDEs and Application

Part of the book series: Trends in Mathematics ((TM))

Abstract

In this note we derive L r − L q estimates for the solutions to the Cauchy problem

$$\displaystyle u_{tt} +(-\varDelta )^{\sigma } u = 0\,, \qquad t\geq 0, \ x\in {\mathbb {R}}^n, \qquad u(0,x)=0, \;\; u_t(0,x)=g(x), $$

with σ > 1. Moreover, we derived the critical index p c(n) for the existence of global in time small data solutions to the associated semilinear Cauchy problem with power nonlinearity |u|p, p > 1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Cui, A. Guo, Solvability of the Cauchy problem of nonlinear beam equations in Besov spaces. Nonlinear Anal. 65, 802–824 (2006)

    Article  MathSciNet  Google Scholar 

  2. M. D’Abbicco, M.R. Ebert, A new phenomenon in the critical exponent for structurally damped semi-linear evolution equations. Nonlinear Anal. 149, 1–40 (2017)

    Article  MathSciNet  Google Scholar 

  3. M. D’Abbicco, S. Lucente, The beam equation with nonlinear memory. Z. Angew. Math. Phys. 67, 60 (2016). http://dx.doi.org/10.1007/s00033-016-0655-x

    Article  MathSciNet  Google Scholar 

  4. L. D’Ambrosio, S. Lucente, Nonlinear Liouville theorems for Grushin and Tricomi operators. J. Differ. Equ. 123, 511–541 (2003)

    Article  MathSciNet  Google Scholar 

  5. M.R. Ebert, M. Reissig, Methods for partial differential equations, Qualitative Properties of Solutions, Phase Space Analysis, Semilinear Models (Birkhäuser/Springer, Cham, 2018). https://doi.org/10.1007/978-3-319-66456-9

  6. L. Hörmander, Estimates for translation invariant operators in L p spaces. Acta Math. 104, 93–140 (1960)

    Article  MathSciNet  Google Scholar 

  7. A. Miyachi, On some singular Fourier multipliers. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28, 267–315 (1981)

    MathSciNet  MATH  Google Scholar 

  8. H. Pecher, L p-Abschätzungen und klassische Lösungen für nichtlineare Wellengleichungen. I. Math. Z. 150, 159–183 (1976)

    Article  Google Scholar 

  9. J. Peral, L p estimates for the Wave Equation. J. Funct. Anal. 36, 114–145 (1980)

    Article  MathSciNet  Google Scholar 

  10. S. Sjöstrand, On the Riesz means of the solutions of the Schrödinger equation. Annali della Scuola Normale Superiore di Pisa-Classe di Scienze 24, 331–348 (1970)

    MATH  Google Scholar 

  11. W.A. Strauss, Nonlinear scattering theory at low energy. J. Funct. Anal. 41, 110–133 (1981)

    Article  MathSciNet  Google Scholar 

  12. R. Strichartz, Convolutions with kernels having singularities on a sphere. Trans. Am. Math. Soc. 148, 461–471 (1970)

    Article  MathSciNet  Google Scholar 

  13. S. Wang, Well-posedness and Ill-posedness of the Nonlinear Beam Equation. Thesis (Ph.D.), The University of New Mexico, p. 63 (2013). ISBN:978-1303-51754-9

    Google Scholar 

Download references

Acknowledgements

The first author has been has been partially supported by São Paulo Research Foundation (Fundação de Amparo à Pesquisa do Estado de São Paulo, FAPESP), grant 2017/19497-3. The second author was supported by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo Rempel Ebert .

Editor information

Editors and Affiliations

Appendix

Appendix

In the Appendix we list results of Harmonic Analysis.

The first ingredient is the celebrated Mikhlin-Hörmander multiplier theorem:

Theorem A.1

Let 1 < p < ∞ and \(k=\max { \left \{[n(1/p-1/2)]+1,[n/2]+1 \right \}}\) . Suppose that \(m \in \mathcal C^{k}({\mathbb {R}}^{n}\backslash \left \{ 0 \right \})\) and

$$\displaystyle \begin{aligned} \left| \partial_\xi^{\beta}m(\xi)\right| \leq C\, |\xi|{}^{-|\beta|}, \quad |\beta|\leq k. \end{aligned} $$

Then .

The next result is about translation invariant operators in \(L^p=L^p(\mathbb {R}^n)\) spaces (see [6]).

Theorem A.2

Let f be a measurable function. Moreover, we suppose the following relation with suitable positive constants C and b ∈ (1, ):

$$\displaystyle \begin{aligned} \mathit{\mbox{meas}}\, \{ \xi \in \mathbb{R}^n : |f(\xi)| \geq l \} \leq C l^{-b}.\end{aligned} $$

Then \(f \in M_p^q\) if 1 < p ≤ 2 ≤ q < ∞ and \(\frac {1}{p}-\frac {1}{q} = \frac {1}{b}\).

In [10] one can find the following result, that is useful tool to derive L q − L q estimates.

Proposition A.1 (Berstein’s inequality)

Let \(N>\frac {n}{2}\) . If f, D N f  L 2 , then there exists a constant C > 0 such that

$$\displaystyle \begin{aligned} \|f\|{}_{M_1}\leq C \|f\|{}_{L^2}^{1-\frac{n}{2N}}\|D^Nf\|{}_{L^2}^{\frac{n}{2N}}. \end{aligned} $$

In [8] one can find the following result, well known as Littman’s lemma, that is a very useful tool to derive L r − L q estimates on the dual line.

Theorem A.3

Let us consider for τ  τ 0 , τ 0 is a large positive number, the oscillating integral

$$\displaystyle \begin{aligned} F^{-1}_{\eta\rightarrow x}\big(e^{-i\tau p(\eta)} v(\eta)\big).\end{aligned}$$

The amplitude function v = v(η) is supposed to belong to \(C_0^\infty (\mathbb {R}^n)\) with support in \(\{\eta \in \mathbb {R}^n: |\eta | \in [\frac {1}{2},2]\}\) . The function p = p(η) is C in a neighborhood of the support of v. Moreover, the rank of the Hessian H p(η) is supposed to satisfy the assumption rank H p(η) ≥ k on the support of v. Then the following L  L estimate holds:

$$\displaystyle \begin{aligned} \big\|F^{-1}_{\eta\rightarrow x}\big(e^{-i\tau p(\eta)} v(\eta)\big)\|{}_{L^\infty(\mathbb{R}^n_x)} \leq C(1+\tau)^{-\frac{k}{2}} \sum_{|\alpha| \leq L} \|D^\alpha_\eta v(\eta)\|{}_{L^\infty(\mathbb{R}^n_\eta)}, \end{aligned}$$

where L is a suitable entire number.

The next result about singular Fourier multipliers is due to Miyachi (see Theorem 4.1 in [7]):

Theorem A.4

Let us consider Fourier multiplier

$$\displaystyle \begin{aligned} m_{a,b}(\xi)= \frac{(1-\chi(\xi))e^{ i|\xi|{}^{a}}}{|\xi|{}^b}, \qquad \xi \in \mathbb{R}^n, \qquad a>0, a \neq 1, \qquad b\in \mathbb{R}, \end{aligned}$$

where χ is as in Notation 2 . If 1 < p  q, then \(m \in M_p^q\) if, and only if, \(\frac 1{p}+ \frac 1{q}\leq 1\) and \(\frac {1-a}{p}- \frac 1{q}\leq \frac {b}{n}-\frac {a}{2}\) or \(\frac 1{p}+ \frac 1{q}\geq 1\) and \(\frac 1{p}-\frac {1-a}{q}\leq \frac {b}{n}+\frac {a}{2}\) . Moreover, \(m \in M_1^q\) if, and only if, \(1-\frac {1-a}{q}< \frac {b}{n}+\frac {a}{2}\).

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ebert, M.R., Lourenço, L.M. (2019). The Critical Exponent for Evolution Models with Power Non-linearity. In: D'Abbicco, M., Ebert, M., Georgiev, V., Ozawa, T. (eds) New Tools for Nonlinear PDEs and Application. Trends in Mathematics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-10937-0_5

Download citation

Publish with us

Policies and ethics