Skip to main content

Solutions of Traveling Wave Type for Korteweg-de Vries-Type System with Polynomial Potential

  • Conference paper
  • First Online:
Optimization and Applications (OPTIMA 2018)

Abstract

This paper deals with the implementation of numerical methods for searching for traveling waves for Korteweg-de Vries-type equations with time delay. Based upon the group approach, the existence of traveling wave solution and its boundedness are shown for some values of parameters. Meanwhile, solutions constructed with the help of the proposed constructive method essentially extend the class of systems, possessing solutions of this type, guaranteed by theory. The proposed method for finding solutions is based on solving a multiparameter extremal problem. Several numerical solutions are demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abell, K., Elmer, C., Humphries, A., Van Vleck, E.: Computation of mixed type functional differential boundary value problems. SIAM J. Appl. Dyn. Syst. 4(3), 755–781 (2005). https://doi.org/10.1137/040603425

    Article  MathSciNet  MATH  Google Scholar 

  2. Baotong, C.: Functional differential equations mixed type in banach spaces. Rendiconti del Seminario Matematico della Università di Padova, 94, 47–54 (1995). http://www.numdam.org/item?id=RSMUP_1995_94_47_0

  3. Beklaryan, L.: A method for the regularization of boundary value problems for differential equations with deviating argument. Soviet Math. Dokl. 43, 567–571 (1991)

    MathSciNet  MATH  Google Scholar 

  4. Beklaryan, L.: Introduction to the Theory of Functional Differential Equations. Group Approach. Factorial Press, Moscow (2007)

    Google Scholar 

  5. Beklaryan, L.: Quasitravelling waves. Sbornik: Math. 201(12), 1731–1775 (2010). https://doi.org/10.1070/SM2010v201n12ABEH004129

    Article  MathSciNet  MATH  Google Scholar 

  6. Beklaryan, L.: Quasi-travelling waves as natural extension of class of traveling waves. Tambov Univ. Reports. Ser. Nat. Tech. Sci. 19(2), 331–340 (2014)

    Google Scholar 

  7. Beklaryan, L., Beklaryan, A.: Traveling waves and functional differential equations of pointwise type. what is common? In: Proceedings of the VIII International Conference on Optimization and Applications (OPTIMA-2017), Petrovac, Montenegro, October 2–7. CEUR-WS.org (2017). http://ceur-ws.org/Vol-1987/paper13.pdf

  8. Bellen, A., Zennaro, M.: Numerical Methods for Delay Differential Equations. Oxford University Press, USA (2003)

    Book  Google Scholar 

  9. Bellman, R., Cooke, K.: Differential-Difference Equations. Academic Press, New York (1963)

    MATH  Google Scholar 

  10. El’sgol’ts, L., Norkin, S.: Introduction to the Theory and Application of Differential Equations with Deviating Arguments. Academic Press, New York (1973)

    MATH  Google Scholar 

  11. Ford, N., Lumb, P.: Mixed-type functional differential equations: a numerical approach. J. Comput. Appl. Math. 229(2), 471–479 (2009). https://doi.org/10.1016/j.cam.2008.04.016

    Article  MathSciNet  MATH  Google Scholar 

  12. Frenkel, Y., Contorova, T.: On the theory of plastic deformation and twinning. J. Exp. Theor. Phys. 8(1), 89–95 (1938)

    Google Scholar 

  13. Gardner, C., Greene, J., Kruskal, M.: Method for solving the korteweg-de vries equation. Phys. Rev. Lett. 19(19), 1095–1097 (1967). https://doi.org/10.1103/PhysRevLett.19.1095

    Article  Google Scholar 

  14. Gornov, A., Zarodnyuk, T., Madzhara, T., Daneeva, A., Veyalko, I.: A Collection of Test Multiextremal Optimal Control Problems, pp. 257–274. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-5131-0_16

    Book  MATH  Google Scholar 

  15. Hale, J.: Theory of Functional Differential Equations. Springer, New York (1977)

    Book  Google Scholar 

  16. Hale, J., Lunel, S.V.: Introduction to Functional Differential Equations. Applied Mathematical Sciences, vol. 99. Springer, New York (1993). https://doi.org/10.1007/978-1-4612-4342-7

    Book  MATH  Google Scholar 

  17. Kortweg, D., De Vries, G.: On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Philos. Mag. 5(39), 422–443 (1895)

    Article  MathSciNet  Google Scholar 

  18. Li, X., Wu, B.: A continuous method for nonlocal functional differential equations with delayed or advanced arguments. J. Math. Anal. Appl. 409(1), 485–493 (2014). https://doi.org/10.1016/j.jmaa.2013.07.039

    Article  MathSciNet  MATH  Google Scholar 

  19. Lima, P., Teodoro, M., Ford, N., Lumb, P.: Analytical and numerical investigation of mixed-type functional differential equations. J. Comput. Appl. Math. 234(9), 2826–2837 (2010). https://doi.org/10.1016/j.cam.2010.01.028

    Article  MathSciNet  MATH  Google Scholar 

  20. Lima, P., Teodoro, M., Ford, N., Lumb, P.: Finite element solution of a linear mixed-type functional differential equation. Numer. Algorithms 55(2–3), 301–320 (2010). https://doi.org/10.1007/s11075-010-9412-y

    Article  MathSciNet  MATH  Google Scholar 

  21. Maset, S.: Numerical solution of retarded functional differential equations as abstract cauchy problems. J. Comput. Appl. Math. 161(2), 259–282 (2003). https://doi.org/10.1016/j.cam.2003.03.001

    Article  MathSciNet  MATH  Google Scholar 

  22. Miwa, T., Jimbo, M., Date, E.: Solitons: Differential Equations, Symmetries and Infinite Dimensional Algebras. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  23. Myshkis, A.: Linear Differential Equations with Retarded Arguments. Nauka, Moscow (1972)

    Google Scholar 

  24. Sun, D., Chen, D., Zhao, M., Liu, W., Zheng, L.: Linear stability and nonlinear analyses of traffic waves for the general nonlinear car-following model with multi-time delays. Phys. A: Stat. Mech. Appl. 501, 293–307 (2018). https://doi.org/10.1016/j.physa.2018.02.179

    Article  Google Scholar 

  25. Toda, M.: Theory of Nonlinear Lattices, vol. 20. Springer, Berlin, Heidelberg (1989). https://doi.org/10.1007/978-3-642-83219-2

    Book  MATH  Google Scholar 

  26. Wu, J.: Theory and Applications of Partial Functional Differential Equations, Applied Mathematical Sciences, vol. 119. Springer, New York (1996). https://doi.org/10.1007/978-1-4612-4050-1

    Book  Google Scholar 

  27. Xu, L., Lo, S., Ge, H.: The korteweg-de vires equation for bidirectional pedestrian flow model. Procedia Eng. 52, 495–499 (2013). https://doi.org/10.1016/j.proeng.2013.02.174

    Article  Google Scholar 

  28. Yu, L., Shi, Z., Li, T.: A new car-following model with two delays. Phys. Lett. A 378(4), 348–357 (2014). https://doi.org/10.1016/j.physleta.2013.11.030

    Article  MathSciNet  MATH  Google Scholar 

  29. Zarodnyuk, T., Anikin, A., Finkelshtein, E., Beklaryan, A., Belousov, F.: The technology for solving the boundary value problems for nonlinear systems of functional differential equations of pointwise type. Mod. Technol. Syst. Anal. Model. 49(1), 19–26 (2016)

    Google Scholar 

  30. Zarodnyuk, T., Gornov, A., Anikin, A., Finkelstein, E.: Computational technique for investigating boundary value problems for functional-differential equations of pointwise type. In: Proceedings of the VIII International Conference on Optimization and Applications (OPTIMA-2017), Petrovac, Montenegro, October 2–7. CEUR-WS.org (2017). http://ceur-ws.org/Vol-1987/paper82.pdf

  31. Zhao, Z., Rong, E., Zhao, X.: Existence for korteweg-de vries-type equation with delay. Adv. Differ. Equ. 2012(1), 64 (2012). https://doi.org/10.1186/1687-1847-2012-64

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhao, Z., Xu, Y.: Solitary waves for korteweg-de vries equation with small delay. J. Math. Anal. Appl. 368(1), 43–53 (2010). https://doi.org/10.1016/j.jmaa.2010.02.014

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work was partially supported by Russian Science Foundation, Project 17-71-10116. Also, the reported study was partially funded by RFBR according to the research project 16-01-00110 A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armen L. Beklaryan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Beklaryan, L.A., Beklaryan, A.L., Gornov, A.Y. (2019). Solutions of Traveling Wave Type for Korteweg-de Vries-Type System with Polynomial Potential. In: Evtushenko, Y., Jaćimović, M., Khachay, M., Kochetov, Y., Malkova, V., Posypkin, M. (eds) Optimization and Applications. OPTIMA 2018. Communications in Computer and Information Science, vol 974. Springer, Cham. https://doi.org/10.1007/978-3-030-10934-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10934-9_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10933-2

  • Online ISBN: 978-3-030-10934-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics