Skip to main content

Numerical Implementation of the Contact of Optimal Trajectory with Singular Regime in the Optimal Control Problem with Quadratic Criteria and Scalar Control

  • Conference paper
  • First Online:
Optimization and Applications (OPTIMA 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 974))

Included in the following conference series:

  • 533 Accesses

Abstract

Previous works by these authors offer the numerical method of successive approximations for developing the solutions of the problem of stabilization of nonlinear systems with standard functional. This paper considers applying this method for studying the problem with singular control. It is achieved by introducing an auxiliary problem. The solution for the auxiliary problem provides a smooth approximation to the solution of the initial problem. The paper presents the algorithms for constructing an approximate solution for the initial problem. It is demonstrated that unlike direct algorithms of optimal control, these algorithms allow registering the saturation point, thus enabling one to register and study singular regimes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Athans, M., Falb, P.: Optimal Control. McGraw-Hill, New York (1966)

    MATH  Google Scholar 

  2. Bellman, R.: Adaptive Control Processes. Princeton University Press, Princeton (1961)

    Book  MATH  Google Scholar 

  3. Lukes, D.L.: Optimal regulation of nonlinear systems. SIAM J. Control Optim. 7, 75–100 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  4. Yamamoto, Y.: Optimal control of nonlinear systems with quadratic performance. J. Math. Anal. Appl. 64, 348–353 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dacka, C.: On the controllability of a class of nonlinear systems. IEEE Trans. Automat. Control. 25, 263–266 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  6. Balachandran, K., Somasundaram, D.: Existence of optimal control for nonlinear systems with quadratic performance. J. Austral. Math. Soc. Ser. B. 29, 249–255 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  7. Afanas’ev, A.P., Dzyuba, S.M., Lobanov, S.M., Tyutyunnik, A.V.: Successive approximation and suboptimal control of systems with separated linear part. Appl. Comput. Math. 2(1), 48–56 (2003)

    MathSciNet  MATH  Google Scholar 

  8. Afanas’ev, A.P., Dzyuba, S.M., Lobanov, S.M., Tyutyunnik, A.V.: On a suboptimal control of nonlinear systems via quadratic criteria. Appl. Comput. Math. 3(2), 158–169 (2004)

    MathSciNet  MATH  Google Scholar 

  9. Tang, G.-Y., Gao, D.-X.: Approximation design of optimal controllers for nonlinear systems with sinusoidal disturbances. Nonlinear Anal. Theory Methods Appl. 66(2), 403–414 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Zhang, S.-M., Tang, G.-Y., Sun, H.-Y.: Approximate optimal rejection to sinusoidal disturbance for nonlinear systems. In: IEEE International Conference on Systems, Man and Cybernetics, pp. 2816–2821 (2008)

    Google Scholar 

  11. Afanas’ev, A.P., Dzyuba, S.M.: Optimal control of nonlinear systems via quadratic criteria. Trans. ISA RAS 32, 49–62 (2008). (in Russian)

    Google Scholar 

  12. Gao, De-Xin: Disturbance attenuation and rejection for systems with nonlinearity via successive approximation approach. In: IEEE Proceedings of the 30th Chinese Control Conference, pp. 250–255 (2011)

    Google Scholar 

  13. Ma, S.Y.: A successive approximation approach of nonlinear optimal control with R-rank persistent disturbances. Appl. Mech. Mater. 130, 1862–1866 (2012)

    Google Scholar 

  14. Afanas’ev, A.P., Dzyuba, S.M., Emelyanova, I.I., Pchelintsev, A.N., Putilina, E.V.: Optimal control of nonlinear systems with separated linear part via quadratic criteria. Optim. Lett. (2018). https://doi.org/10.1007/s11590-018-1309-z

  15. Fuller, A. T.: Optimization of relay control systems with respect to different qualitative criteria. In: Proceedings of the First IFAC Conference, AN SSSR, pp. 584–605 (1961)

    Google Scholar 

  16. Kelley, H.J., Kopp, R.E., Moyer, H.G.: Singular extremals. In: Leitmann, G. (ed.) Topics of Optimization, pp. 63–101. Academic Press, New York and London (1967)

    Chapter  Google Scholar 

  17. Neustadt, L.W.: Optimization, A Theory of Necessary Conditions. Princeton University Press, Princeton (1976)

    MATH  Google Scholar 

  18. Krener, A.: The high order maximal principle and its application to singular extremals. Siam J. Control Optim. 15(2), 256–293 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  19. Bershchanskii, Y.M.: Fusing of singular and nonsingular parts of optimal control. Autom. Remote Control 40(3), 325–330 (1979)

    MathSciNet  Google Scholar 

  20. Chukanov, S.V., Milutin, A.A.: Qualitative study of singularities for extremals of quadratic optimal control problem. Russ. J. Math. Phys. 2(1), 31–48 (1994)

    MathSciNet  MATH  Google Scholar 

  21. Zelikin, M.I., Lokutsievskii, L.V., Hildebrand, R.: Typicality of chaotic fractal behavior of integral vortices in Hamiltonian systems with discontinuous right hand side. In: Optimal Control, Contemporary Mathematics. Fundamental directions(SMFN), the Peoples’ Friendship University of Russia (RUDN), Moscow, vol. 56, pp. 5–128 (2015)

    Google Scholar 

  22. Fedorenko, R.P.: Approximate Solution of Optimal Control Problems. Nauka, Moscow (1978). (in Russian)

    MATH  Google Scholar 

  23. Schwartz, L.: Analyse Mathématique, vol. II. Hermann, Paris (1967). (in French)

    MATH  Google Scholar 

  24. Afanas’ev, A.P., Dzyuba, S.M.: Method for constructing approximate analytic solutions of differential equations with a polynomial right-hand side. Comput. Math. Math. Phys. 55(10), 1665–1673 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Afanas’ev, A.P., Dzyuba S.M., Emelyanova, I.I., Putilina, E.V.: Decomposition algorithm of generalized horner scheme for multidimensional polynomial evaluation. In: Proceedings of the OPTIMA-2017 Conference, Petrovac, Montenegro, 02 October 2017, pp. 7–11 (2017)

    Google Scholar 

Download references

Acknowledgments

This research was supported by the Russian Science Foundation, grant no. 16-11-10352.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander P. Afanas’ev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Afanas’ev, A.P., Dzyuba, S.M., Emelyanova, I.I., Putilina, E.V. (2019). Numerical Implementation of the Contact of Optimal Trajectory with Singular Regime in the Optimal Control Problem with Quadratic Criteria and Scalar Control. In: Evtushenko, Y., Jaćimović, M., Khachay, M., Kochetov, Y., Malkova, V., Posypkin, M. (eds) Optimization and Applications. OPTIMA 2018. Communications in Computer and Information Science, vol 974. Springer, Cham. https://doi.org/10.1007/978-3-030-10934-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10934-9_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10933-2

  • Online ISBN: 978-3-030-10934-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics