Skip to main content

Piecewise Linear Bounding Functions for Univariate Global Optimization

  • Conference paper
  • First Online:

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 974))

Abstract

The paper addresses the problem of constructing lower and upper bounding functions for univariate functions. This problem is of a crucial importance in global optimization where such bounds are used by deterministic methods to reduce the search area. It should be noted that bounding functions are expected to be relatively easy to construct and manipulate with. We propose to use piecewise linear estimators for bounding univariate functions. The rules proposed in the paper enable an automated synthesis of lower and upper bounds from the function’s expression in an algebraic form. Numerical examples presented in the paper demonstrate the high accuracy of the proposed bounds.

The reported study was funded by RFBR according to the research project 17-07-00510.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Baritompa, W.: Accelerations for a variety of global optimization methods. J. Global Optim. 4(1), 37–45 (1994)

    Article  MathSciNet  Google Scholar 

  2. Bompadre, A., Mitsos, A.: Convergence rate of McCormick relaxations. J. Global Optim. 52(1), 1–28 (2012)

    Article  MathSciNet  Google Scholar 

  3. Breiman, L., Cutler, A.: A deterministic algorithm for global optimization. Math. Program. 58(1–3), 179–199 (1993)

    Article  MathSciNet  Google Scholar 

  4. Casado, L.G., MartÍnez, J.A., GarcÍa, I., Sergeyev, Y.D.: New interval analysis support functions using gradient information in a global minimization algorithm. J. Global Optim. 25(4), 345–362 (2003)

    Article  MathSciNet  Google Scholar 

  5. Ershov, A., Khamisov, O.V.: Automatic global optimization. Diskretnyi Analiz i Issledovanie Operatsii 11(2), 45–68 (2004)

    MathSciNet  Google Scholar 

  6. Evtushenko, Y.G.: A numerical method of search for the global extremum of functions (scan on a nonuniform net). Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki 11(6), 1390–1403 (1971)

    MathSciNet  Google Scholar 

  7. Evtushenko, Y., Posypkin, M.: A deterministic approach to global box-constrained optimization. Optimization Letters 7(4), 819–829 (2013)

    Article  MathSciNet  Google Scholar 

  8. Floudas, C., Gounaris, C.: A review of recent advances in global optimization. J. Global Optim. 45(1), 3–38 (2009)

    Article  MathSciNet  Google Scholar 

  9. Gergel, V., Grishagin, V., Israfilov, R.: Local tuning in nested scheme of global optimization. Procedia Comput. Sci. 51, 865–874 (2015)

    Article  Google Scholar 

  10. Hansen, E., Walster, G.W.: Global Optimization Using Interval Analysis: Revised and Expanded. CRC Press, New York (2003)

    Google Scholar 

  11. Horst, R., Pardalos, P.M.: Handbook of Global Optimization, vol. 2. Springer Science & Business Media, Dordrecht (2013)

    MATH  Google Scholar 

  12. Khajavirad, A., Sahinidis, N.: Convex envelopes of products of convex and component-wise concave functions. J. Global Optim. 52(3), 391–409 (2012)

    Article  MathSciNet  Google Scholar 

  13. Khamisov, O.: Explicit univariate global optimization with piecewise linear support functions, proc. DOOR 2016, CEUR-WS.org, vol. 1623, pp. 218–255. http://ceur-ws.org/Vol-1623/papermp19.pdf

  14. Khamisov, O.: Optimization with quadratic support functions in nonconvex smooth optimization, aIP Conference Proceedings 1776, 050010 (2016). https://doi.org/10.1063/1.4965331

  15. Lera, D., Sergeyev, Y.D.: Acceleration of univariate global optimization algorithms working with lipschitz functions and lipschitz first derivatives. SIAM J. Optim. 23(1), 508–529 (2013)

    Article  MathSciNet  Google Scholar 

  16. Pardalos, P.M., Rosen, J.: Reduction of nonlinear integer separable programming problems. Int. J. Comput. Math. 24(1), 55–64 (1988)

    Article  Google Scholar 

  17. Paulavičius, R., Žilinskas, J.: Simplicial Global Optimization. Springer, New York (2014). 10.1007/978-1-4614-9093-7

    Book  Google Scholar 

  18. Pijavskij, S.: An algorithm for finding the global extremum of function. Optimal Decisions 2, 13–24 (1967)

    Google Scholar 

  19. Pintér, J.D.: Global Optimization in Action: Continuous and Lipschitz Optimization: Algorithms, Implementations and Applications, vol. 6. Springer Science & Business Media, New York (2013)

    Google Scholar 

  20. Ratz, D.: An optimized interval slope arithmetic and its application. Inst. für Angewandte Mathematik (1996)

    Google Scholar 

  21. Ratz, D.: A nonsmooth global optimization technique using slopes: the one-dimensional case. J. Global Optim. 14(4), 365–393 (1999)

    Article  MathSciNet  Google Scholar 

  22. Rosen, J.B., Pardalos, P.M.: Global minimization of large-scale constrained concave quadratic problems by separable programming. Math. Program. 34(2), 163–174 (1986)

    Article  MathSciNet  Google Scholar 

  23. Sergeyev, Y.D.: An information global optimization algorithm with local tuning. SIAM J. Optim. 5(4), 858–870 (1995)

    Article  MathSciNet  Google Scholar 

  24. Sergeyev, Y.D.: Global one-dimensional optimization using smooth auxiliary functions. Math. Program. 81(1), 127–146 (1998)

    Article  MathSciNet  Google Scholar 

  25. Sergeyev, Y.D., Mukhametzhanov, M.S., Kvasov, D.E., Lera, D.: Derivative-free local tuning and local improvement techniques embedded in the univariate global optimization. J. Optim. Theory Appl. 171(1), 186–208 (2016)

    Article  MathSciNet  Google Scholar 

  26. Shubert, B.O.: A sequential method seeking the global maximum of a function. SIAM J. Numer. Anal. 9(3), 379–388 (1972)

    Article  MathSciNet  Google Scholar 

  27. Strekalovsky, A.S.: Global optimality conditions for nonconvex optimization. J. Global Optim. 12(4), 415–434 (1998)

    Article  MathSciNet  Google Scholar 

  28. Strongin, R.G., Sergeyev, Y.D.: Global Optimization with Non-convex Constraints: Sequential and Parallel Algorithms, vol. 45. Springer Science & Business Media, New York (2013)

    MATH  Google Scholar 

  29. Vinkó, T., Lagouanelle, J.L., Csendes, T.: A new inclusion function for optimization: Kite-the one dimensional case. J. Global Optim. 30(4), 435–456 (2004)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Usov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Khamisov, O., Posypkin, M., Usov, A. (2019). Piecewise Linear Bounding Functions for Univariate Global Optimization. In: Evtushenko, Y., Jaćimović, M., Khachay, M., Kochetov, Y., Malkova, V., Posypkin, M. (eds) Optimization and Applications. OPTIMA 2018. Communications in Computer and Information Science, vol 974. Springer, Cham. https://doi.org/10.1007/978-3-030-10934-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10934-9_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10933-2

  • Online ISBN: 978-3-030-10934-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics