Dimensional Reduction and Black Holes

  • Dieter LüstEmail author
  • Ward Vleeshouwers
Part of the SpringerBriefs in Physics book series (SpringerBriefs in Physics)


We start from the effective action
$$\begin{aligned} S_{\text {eff}}^{II} + S_{\text {eff}}^D+S_{\text {eff}}^{WZ} =&\int d^{10}x \left[ \frac{1}{2\kappa ^2} \left( \sqrt{-G} R+ \frac{1}{2} \left( d \Phi \right) ^2 + \frac{1}{2(p+2)!} \left( dC^{(p+1)} \right) ^2 \right) + \right. \\&\qquad \left. ~~ ~+ \sum _{i=1,2} \left( T_p \delta ^{(9-p)} (x_{\perp } - a_i) \right) \left( - \frac{p-3}{4} \Phi + \sqrt{-G} \right) + \rho _p C^{(p+1)} \delta ^{(9-p)} (x_{\perp } - a_i) + \dots \right] ~. \end{aligned}$$

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Arnold-Sommerfeld-CenterLudwig-Maximilians-UniversitaetMunichGermany
  2. 2.Institute for Theoretical PhysicsUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations