Advertisement

Construction of Morphological Grammars for the Tunisian Dialect

  • Roua TorjmenEmail author
  • Kais Haddar
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 987)

Abstract

The use of Tunisian dialect is growing rapidly in social networks. Also, the direct application of standard Arabic tools on Tunisian dialect corpora provides poor results. Thus, the construction of resources has become mandatory for this dialect. With the intention of developing inflected and derivational morphological grammars, we study many Tunisian corpora to elaborate different forms for grammatical categories. Our proposed method is based on four steps which start with the extraction of Tunisian dialect words and end with their morphological, lexical and syntactic enrichment. This method is established thanks to a set of morphological local grammars implemented in NooJ linguistic platform. In fact, the local morphological grammars are transformed into transducers using NooJ’s new technologies. For the evaluation of our method, we apply our lexical resources to a Tunisian corpus with more than 18,000 words. The obtained results look promising.

Keywords

Tunisian dialect Linguistic resources Morphological grammars Dictionaries 

References

  1. 1.
    Al-Shargi, F., Kaplan, A., Eskander, R., Habash, N., Rambow, O.: Morphologically annotated corpora and morphological analyzers for Moroccan and Sanaani Yemeni Arabic. In: 10th Language Resources and Evaluation Conference (LREC 2016), Portoroz, Slovenia, May 2016, pp. 1300–1306 (2016)Google Scholar
  2. 2.
    Boujelbane, R., Khemekhem, M.E., Belguith, L.H.: Mapping rules for building a Tunisian dialect lexicon and generating corpora. In: Proceedings of the Sixth International Joint Conference on Natural Language Processing, Nagoya, Japan, 14–18 October 2013, pp. 419–428 (2013)Google Scholar
  3. 3.
    Ghezaiel Hammouda, N., Torjmen, R., Haddar, K.: Transducer Cascade to Parse Arabic Corpora. In: Silberztein, M., Atigui, F., Kornyshova, E., Métais, E., Meziane, F. (eds.) NLDB 2018. LNCS, vol. 10859, pp. 230–237. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-91947-8_22 CrossRefGoogle Scholar
  4. 4.
    Harrat, S., Meftouh, K., Abbas, M., Smaili, K.: Building resources for Algerian arabic dialects. In: Fifteenth Annual Conference of the International Speech Communication Association, Singapore, 14–18 September 2014, pp. 2123–2127 (2014)Google Scholar
  5. 5.
    Mesfar, S.: Analyse morpho-syntaxique et reconnaissance des entités nommées en arabe standard. Doctoral dissertation, Thèse, Université de franche-comté, France (2008)Google Scholar
  6. 6.
    Silberztein, M.: NooJs dictionaries. In: Proceedings of LTC, Poland, 21–23 April 2005, vol. 5, pp. 291–295 (2005)Google Scholar
  7. 7.
    Tachicart, R., Bouzoubaa, K., Jaafar, H.: Building a Moroccan dialect electronic dictionary (MDED). In: 5th International Conference on Arabic Language Processing, pp. 216–221 (2014)Google Scholar
  8. 8.
    Torjmen, R., Haddar, K.: Morphological analyzer for the Tunisian dialect. In: Sojka, P., Horák, A., Kopeček, I., Pala, K. (eds.) International Workshop on Temporal, Spatial, and Spatio-Temporal Data Mining, vol. 11107, pp. 180–187. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-00794-2_19 CrossRefGoogle Scholar
  9. 9.
    Zribi, I., Ellouze, M., Belguith, L.H., Blache, P.: Morphological disambiguation of Tunisian dialect. J. King Saud Univ. Comput. Inf. Sci. 29(2), 147–155 (2017)Google Scholar
  10. 10.
    Zribi, I., Khemakhem, M.E., Belguith, L.H.: Morphological analysis of Tunisian dialect. In: Proceedings of the Sixth International Joint Conference on Natural Language Processing, Nagoya, Japan, 14–18 October 2013, pp. 992–996 (2013)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of Economic Sciences and Management, Miracl LaboratoryUniversity of SfaxSfaxTunisia
  2. 2.Faculty of Sciences of Sfax, Miracl LaboratoryUniversity of SfaxSfaxTunisia

Personalised recommendations