Skip to main content

Regular States and the Regular Algebra Numerical Range

  • Chapter
  • First Online:
Positivity and Noncommutative Analysis

Part of the book series: Trends in Mathematics ((TM))

  • 524 Accesses

Abstract

Let E be a Dedekind complete complex Banach lattice and let \(\mathcal L_{r}(E)\) denote the Banach lattice algebra of regular operators on E. Then a bounded linear functional \(\Phi :\mathcal L_{r}(E)\to \mathbb C\) is called a regular state if Φ(I) = ∥ Φ∥ = 1. Basic properties of regular states are derived and a detailed description of order continuous regular states is obtained for p-spaces. The regular states define the regular numerical algebra range \(V(\mathcal L_{r}(E), T)=\{\Phi (T): \Phi \mbox{ a regular state}\}\). We describe the regular algebra numerical range for operators T in the center Z(E) of E and for operators T disjoint with the center. Using the description of regular states on p(n), we characterize the regular numerical range preserving linear operators on \(\mathcal L_{r}(\ell _{p}(n))\).

Dedicated to Ben de Pagter on the occasion of his retirement

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Y.A. Abramovich, C.D. Aliprantis, Problems in Operator Theory. Graduate Studies in Mathematics, vol. 51 (American Mathematical Society, Providence, 2002)

    Google Scholar 

  2. Y.A. Abramovitch, C.D. Aliprantis, An Invitation to Operator Theory. Graduate Studies in Mathematics, vol. 50 (American Mathematical Society, Providence, 2002)

    Google Scholar 

  3. E.M. Alfsen, F.W. Shultz, State Spaces of Operator Algebras. Mathematics: Theory & Applications (Birkhäuser Boston, Inc., Boston, 2001)

    Google Scholar 

  4. F.F. Bonsall, J. Duncan, Numerical Ranges of Operators on Normed Spaces and of Elements of Normed Algebras. London Mathematical Society Lecture Note Series, vol. 1 (Cambridge University Press, London/New York, 1971)

    Google Scholar 

  5. F.F. Bonsall, J. Duncan, Numerical Ranges. II. London Mathematical Society Lecture Notes Series, vol. 10 (Cambridge University Press, New York/London, 1973)

    Google Scholar 

  6. T. Gillespie, Factorization in Banach function spaces. Indag. Math. 84, 287–300 (1981)

    Article  MathSciNet  Google Scholar 

  7. R. Grzaślewicz, H.H. Schaefer, Extreme points of the positive part of the unit ball and strictly monotone norm. Math. Z. 207(3), 481–483 (1991)

    Article  MathSciNet  Google Scholar 

  8. N.J. Kalton, Hermitian operators on complex Banach lattices and a problem of Garth Dales. J. Lond. Math. Soc. (2) 86(3), 641–656 (2012)

    Article  MathSciNet  Google Scholar 

  9. C-K. Li, S. Pierce, Linear preserver problems. Am. Math. Mon. 108(7), 591–605 (2001)

    Article  MathSciNet  Google Scholar 

  10. C-K. Li, H. Schneider, Orthogonality of matrices. Linear Algebra Appl. 347, 115–122 (2002)

    Article  MathSciNet  Google Scholar 

  11. C-K. Li, A.R. Sourour, Linear operators on matrix algebras that preserve the numerical range, numerical radius or the states. Can. J. Math. 56(1), 134–167 (2004)

    Article  MathSciNet  Google Scholar 

  12. A. Lima, G. Olsen, Extreme points in duals of complex operator spaces. Proc. Am. Math. Soc. 94(3), 427–440 (1985)

    Article  MathSciNet  Google Scholar 

  13. G.Ya. Lozanovskii, On some Banach lattices. Siberian Math J. 10, 419–431 (1969)

    Google Scholar 

  14. V.J. Pellegrini, Numerical range preserving operators on a Banach algebra. Studia Math. 54(2), 143–147 (1975)

    Article  MathSciNet  Google Scholar 

  15. A. Radl, The numerical range of positive operators on Hilbert lattices. Integr. Equ. Oper. Theory 75(4), 459–472 (2013)

    Article  MathSciNet  Google Scholar 

  16. A. Radl, The numerical range of positive operators on Banach lattices, Positivity 19(3), 603–623 (2015)

    Article  MathSciNet  Google Scholar 

  17. A.R. Schep, The order continuous dual of the regular integral operators on L p. Vladikavk. Math. J. 11, 45–48 (2009)

    MathSciNet  MATH  Google Scholar 

  18. B. Simon, Convexity. Cambridge Tracts in Mathematics, vol. 187 (Cambridge University Press, Cambridge, 2011)

    Google Scholar 

  19. A.R. Sourour, Spectrum-preserving linear maps on the algebra of regular operators, in Aspects of Positivity in Functional Analysis (Tübingen, 1985). North-Holland Mathematics Studies, vol. 122 (North-Holland, Amsterdam, 1986), pp. 255–259

    Google Scholar 

  20. A.C. Zaanen, Introduction to Operator Theory in Riesz Spaces (Springer, Berlin, 1997)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton R. Schep .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schep, A.R., Sweeney, J. (2019). Regular States and the Regular Algebra Numerical Range. In: Buskes, G., et al. Positivity and Noncommutative Analysis. Trends in Mathematics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-10850-2_25

Download citation

Publish with us

Policies and ethics