Skip to main content

A Residue Formula for Locally Compact Noncommutative Manifolds

  • Chapter
  • First Online:
Positivity and Noncommutative Analysis

Part of the book series: Trends in Mathematics ((TM))

Abstract

The most significant result in the integration theory for locally compact noncommutative spaces was proven in Carey et al. (J Funct Anal 263(2):383–414, 2012). We review and improve on this result. For bounded, positive operators A, B on a separable Hilbert space \(\mathcal {H}\), if \(AB\in \mathcal {M}_{1,\infty }\), \([A^{\frac 12},B]\in \mathcal {L}_1\) and the limit exists, then AB is Dixmier measurable and, for any dilation-invariant extended limit ω, we have

$$\displaystyle \operatorname {{\mathrm {Tr}}}_\omega (AB)=\lim _{p\downarrow 1}(p-1) \operatorname {{\mathrm {Tr}}}(B^pA^p). $$

The proof of this result is facilitated by the efficient use of recent advances in the theory of singular traces and double operator integrals. The Dixmier traces of pseudo-differential operators of the form \(M_f(1-\Delta )^{-\frac {d}2}\) on \(\mathbb {R}^d\), where f is a Schwartz function on \(\mathbb {R}^d\) and Δ denotes the Laplacian on \(L_2(\mathbb {R}^d)\), are swiftly recovered using this result. An analogous result for the noncommutative plane is also obtained.

Dedicated to Ben de Pagter on the occasion of his 65th birthday

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Birman, M. Solomyak, Double Stieltjes operator integrals, in Spectral Theory and Wave Processes (Russian). Problems in Mathematical Physics, vol. I (Leningrad University, Leningrad, 1966), pp. 33–67

    Google Scholar 

  2. M. Birman, M. Solomyak, Double Stieltjes operator integrals II, in Spectral Theory, Diffraction Problems (Russian). Problems of Mathematical Physics, vol. 2 (Leningrad University, Leningrad, 1967), pp. 26–60

    Google Scholar 

  3. M. Birman, M. Solomyak, Double Stieltjes operator integrals III (Russian). Prob. Math. Phys. 6, 27–53 (1973)

    Google Scholar 

  4. M. Birman, M. Solomyak, Estimates for the singular numbers of integral operators (Russian). Usp. Mat. Nauk 32(1), 17–84 (1977)

    MATH  Google Scholar 

  5. M. Birman, G. Karadzhov, M. Solomyak, Boundedness conditions and spectrum estimates for the operators b(X)a(D) and their analogs, in Estimates and Asymptotics for Discrete Spectra of Integral and Differential Equations (Leningrad, 1989–1990). Advances in Soviet Mathematics, vol. 7 (American Mathematical Society, Providence, 1991), pp. 85–106

    Google Scholar 

  6. M. Birman, M. Solomyak, Double operator integrals in a Hilbert space. Integr. Equ. Oper. Theory 47(2), 131–168 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. C. Brislawn, Kernels of trace class operators. Proc. Am. Math. Soc. 104(4), 1181–1190 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  8. A. Carey, J. Phillips, F. Sukochev, Spectral flow and Dixmier traces. Adv. Math. 173(1), 68–113 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. A. Carey, A. Rennie, A. Sedaev, F. Sukochev, The Dixmier trace and asymptotics of zeta functions. J. Funct. Anal. 249(2), 253–283 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. A. Carey, V. Gayral, A. Rennie, F. Sukochev, Integration on locally compact noncommutative spaces. J. Funct. Anal. 263(2), 383–414 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. P. Clément, B. de Pagter, F. Sukochev, H. Witvliet, Schauder decomposition and multiplier theorems. Stud. Math. 138(2), 135–163 (2000)

    MathSciNet  MATH  Google Scholar 

  12. A. Connes, The action functional in non-commutative geometry. Commun. Math. Phys. 117, 673–683 (1988)

    Article  MATH  Google Scholar 

  13. A. Connes, Noncommutative Geometry (Academic, San Diego, 1994)

    MATH  Google Scholar 

  14. A. Connes, F. Sukochev, D. Zanin, Trace theorem for quasi-Fuchsian groups. Sb. Math. 208(10), 1473–1502 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Y. Daleckiı̆, S. Kreı̆n, Formulas of differentiation according to a parameter of functions of Hermitian operators (Russian). Dokl. Akad. Nauk SSSR 76, 13–16 (1951)

    Google Scholar 

  16. Y. Daleckiı̆, S. Kreı̆n, Integration and differentiation of functions of Hermitian operators and applications to the theory of perturbations (Russian). Voronež. Gos. Univ. Trudy Sem. Funkcional. Anal. 1956(1), 81–105 (1956)

    Google Scholar 

  17. B. de Pagter, F. Sukochev, H. Witvliet, Unconditional decompositions and Schur-type multipliers, in Recent Advances in Operator Theory (Groningen, 1998). Operator Theory: Advances and Applications, vol. 124 (Birkhäuser, Basel, 2001), pp. 505–525

    Google Scholar 

  18. B. de Pagter, F. Sukochev, H. Witvliet, Double operator integrals. J. Funct. Anal. 192(1), 52–111 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. B. de Pagter, F. Sukochev, Differentiation of operator functions in non-commutative L p-spaces. J. Funct. Anal. 212(1), 28–75 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. B. de Pagter, F. Sukochev, Commutator estimates and \(\mathbb {R}\)-flows in non-commutative operator spaces. Proc. Edinb. Math. Soc. (2) 50(2), 293–324 (2007)

    Google Scholar 

  21. J. Dixmier, Existence de traces non normales (French). C. R. Acad. Sci. Paris Sér. A-B 262, A1107–A1108 (1966)

    Google Scholar 

  22. P. Dodds, B. de Pagter, E. Semenov, F. Sukochev, Symmetric functionals and singular traces. Positivity 2(1), 47–75 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. P. Dodds, B. de Pagter, A. Sedaev, E. Semenov, F. Sukochev, Singular symmetric functionals and Banach limits with additional invariance properties (Russian). Izv. Ross. Akad. Nauk Ser. Mat. 67(6), 111–136 (2003). English translation in: Izv. Math. 67(6), 1187–1212 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. P. Dodds, B. de Pagter, A. Sedaev, E. Semenov, F. Sukochev, Singular symmetric functionals (Russian). Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 290 (2002), Issled. po Lineı̆n. Oper. i Teor. Funkts. 30, 42–71, 178; English translation in: J. Math. Sci. (N.Y.) 124(2), 4867–4885 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  25. M. Duflo, Généralités sur les représentations induites (French), in Représentations des Groupes de Lie Résolubles. Monographies de la Société Mathématique de France, vol. 4 (Dunod, Paris, 1972), pp. 93–119

    Google Scholar 

  26. T. Fack, H. Kosaki, Generalised s-numbers of τ-measurable operators. Pac. J. Math. 123(2), 269–300 (1986)

    Article  MATH  Google Scholar 

  27. V. Gayral, J. Gracia-Bondía, B. Iochum, T. Schücker, J. Várilly, Moyal planes are spectral triples. Commun. Math. Phys. 246(3), 569–623 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  28. G. Glaeser, Racine carré d’une fonction différentiable (French). Ann. Inst. Fourier (Grenoble) 13(2), 203–210 (1963)

    Google Scholar 

  29. I. Gohberg, M. Kreı̆n, in Introduction to the Theory of Linear Nonselfadjoint Operators. Translations of Mathematical Monographs, vol. 18 (American Mathematical Society, Providence, 1969)

    Google Scholar 

  30. J. Gracia-Bondía, J. Várilly, Algebras of distributions suitable for phase-space quantum mechanics I. J. Math. Phys. 29(4), 869–879 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  31. J. Gracia-Bondía, J. Várilly, Algebras of distributions suitable for phase-space quantum mechanics II.: topologies on the Moyal algebra. J. Math. Phys. 29(4), 880–887 (1988)

    Google Scholar 

  32. L. Grafakos, Modern Fourier Analysis, 2nd edn. Graduate Texts in Mathematics, vol. 250. (Springer, New York, 2009)

    Book  MATH  Google Scholar 

  33. G. Hardy, Divergent Series (reprint of the revised (1963) edition) (Éditions Jacques Gabay, Sceaux, 1992)

    Google Scholar 

  34. E. Hille, R. Phillips, Functional Analysis and Semi-groups (3rd printing of the revised edition of 1957), American Mathematical Society Colloquium Publications, vol. 31 (American Mathematical Society, Providence, 1974)

    Google Scholar 

  35. N. Kalton, S. Lord, D. Potapov, F. Sukochev, Traces of compact operators and the noncommutative residue. Adv. Math. 235, 1–55 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  36. A. Kolmogorov, S. Fomin, Introductory Real Analysis. Translated from the second Russian edition and edited by R. Silverman (Dover Publications, New York, 1975)

    Google Scholar 

  37. G. Levitina, F. Sukochev, D. Zanin, Cwikel estimates revisited (2017). arXiv preprint arXiv:1703.04254

    Google Scholar 

  38. G. Levitina, F. Sukochev, D. Vella, D. Zanin, Schatten class estimates for the Riesz map of massless Dirac operators. Integr. Equ. Oper. Theory 90(2), 19 (2018)

    Google Scholar 

  39. S. Lord, A. Sedaev, F. Sukochev, Dixmier traces as singular symmetric functionals and applications to measurable operators. J. Funct. Anal. 224(1), 72–106 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  40. S. Lord, D. Potapov, F. Sukochev, Measures from Dixmier traces and zeta functions. J. Funct. Anal. 259, 1915–1949 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  41. S. Lord, F. Sukochev, D. Zanin, Singular Traces: Theory and Applications. De Gruyter Studies in Mathematics, vol. 46 (Walter de Gruyter, Berlin, 2013)

    Google Scholar 

  42. V. Peller, Multiple operator integrals and higher operator derivatives. J. Funct. Anal. 233(2), 515–544 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  43. D. Potapov, F. Sukochev, Lipschitz and commutator estimates in symmetric operator spaces. J. Oper. Theory 59(1), 211–234 (2008)

    MathSciNet  MATH  Google Scholar 

  44. D. Potapov, F. Sukochev, Unbounded Fredholm modules and double operator integrals. J. Reine Angew. Math. 626, 159–185 (2009)

    MathSciNet  MATH  Google Scholar 

  45. M. Reed, B. Simon, Fourier Analysis, Self-adjointness. Methods of Modern Mathematical Physics, vol. II (Academic, New York, 1975)

    Google Scholar 

  46. A. Rennie, Summability for nonunital spectral triples. K-Theory 31, 71–100 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  47. M. Rieffel, Deformation quantization for actions of \(\mathbb {R}^d\). Mem. Am. Math. Soc. 106(506), x+93 (1993)

    Google Scholar 

  48. B. Simon, Trace Ideals and Their Applications. Mathematical Surveys and Monographs, 2nd edn., vol. 120 (American Mathematical Society, Providence, 2005)

    Google Scholar 

  49. F. Sukochev, On a conjecture of A. Bikchentaev, in Spectral Analysis, Differential Equations and Mathematical Physics: A Festschrift in Honor of Fritz Gesztesy’s 60th birthday. Proceedings of Symposia in Pure Mathematics, vol. 87 (American Mathematical Society, Providence, 2013)

    Google Scholar 

  50. F. Sukochev, D. Zanin, ζ-Function and heat kernel formulae. J. Funct. Anal. 260(8), 2451–2482 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  51. F. Sukochev, A. Usachev, D. Zanin, Singular traces and residues of the ζ-function. Indiana Univ. Math. J. 66(4), 1107–1144 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  52. F. Sukochev, D. Zanin, Connes integration formula for the noncommutative plane. Commun. Math. Phys. 359(2), 449–466 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  53. F. Sukochev, D. Zanin, The Connes character formula for locally compact spectral triples. arXiv preprint arXiv:1803.01551 (2018)

    Google Scholar 

  54. B. Thaller, The Dirac Equation (Springer, Berlin, 1992)

    Book  MATH  Google Scholar 

  55. A. Tomskova, Multiple operator integrals: development and applications. Ph.D. thesis, UNSW Sydney, 2017

    Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to Steven Lord for the extraordinary help he contributed related to the presentation of this text and the verification of its results. Denis Potapov, Fedor Sukochev and Dmitriy Zanin gratefully acknowledge the financial support from the Australian Research Council. Dominic Vella gratefully acknowledges the support received through the Australian Government Research Training Program Scholarship.

Appendix: Proof of Lemma 3

Let \(n\in \mathbb {N}\) and p ≥ 1. In the following, for −≤ a < b ≤, the Sobolev space of p-integrable functions on the interval (a, b) may be defined by

$$\displaystyle \begin{aligned}W_{n,p}(a,b)\mathrel{\mathop:}=\Big\{ f\in L_p(a,b)\;:\; \|\partial^\alpha f\|{}_{L_p(a,b)}<\infty,\,\text{ for multi-indices s.t. }|\alpha|\leq n \Big\},\end{aligned}$$

with corresponding norm given by

$$\displaystyle \begin{aligned}\|f\|{}_{W_{n,p}(a,b)}\mathrel{\mathop:}= \sum_{\alpha:|\alpha|\leq m}\Big\|\frac{\partial^{\alpha_1}}{\partial t_1^{\alpha_1}}\cdots\frac{\partial^{\alpha_d}}{\partial t_d^{\alpha_d}}(f)\Big\|{}_{L_p(a,b)},\quad f\in W_{n,p}(a,b).\end{aligned}$$

Lemma 1

For \(n\in \mathbb {N},\) we have

$$\displaystyle \begin{aligned}\|g_p\|{}_{W_{n,2}(0,1)}=\mathcal{O}(1),\quad p\downarrow1.\end{aligned}$$

Proof

Let (δ u f)(t) = f(ut). We write

$$\displaystyle \begin{aligned}g_p=h\cdot \big(f-(p-1)(\delta_{p-1}f)\big),\end{aligned}$$

where

$$\displaystyle \begin{aligned}h(t)=\frac{t}{2}\coth\Big(\frac{t}{2}\Big),\quad f(t)=\frac 1t\tanh\Big(\frac{t}{2}\Big),\quad t\in\mathbb{R}.\end{aligned}$$

By Leibniz rule, we have

$$\displaystyle \begin{aligned} \|g_p\|{}_{W_{n,2}(0,1)} &\leq\Big\|h\cdot \big(f-(p-1)(\delta_{p-1}f)\big)\Big\|{}_{W_{n,\infty}(0,1)} \\&\leq\|h\|{}_{W_{n,\infty}(0,1)}\big\|f-(p-1)(\delta_{p-1}f)\big\|{}_{W_{n,\infty}(0,1)}. \end{aligned} $$

For 0 ≤ k ≤ n, we have

$$\displaystyle \begin{aligned}\big(f-(p-1)(\delta_{p-1}f)\big)^{(k)}=f^{(k)}-(p-1)^{k+1}\delta_{p-1}(f^{(k)}).\end{aligned}$$

Hence,

$$\displaystyle \begin{aligned}\Big\|\big(f-(p-1)(\delta_{p-1}f)\big)^{(k)}\Big\|{}_{\infty}\leq \big(1+(p-1)^{k+1}\big)\|f^{(k)}\|{}_{\infty}.\end{aligned} $$

Lemma 2

For \(n\in \mathbb {N},\) we have

$$\displaystyle \begin{aligned}\|g_p\|{}_{W_{n,2}(1,\infty)}=\mathcal{O}\big((p-1)^{-\frac 12}\big),\quad p\downarrow1.\end{aligned}$$

Proof

Let (δ u f)(t) = f(ut). We write

$$\displaystyle \begin{aligned}g_p=h\cdot (f-\delta_{p-1}f),\end{aligned}$$

where

$$\displaystyle \begin{aligned}h(t)=\frac 12\coth\Big(\frac{t}{2}\Big),\quad f(t)=\tanh\Big(\frac{t}{2}\Big),\quad t\in\mathbb{R}.\end{aligned}$$

By Leibniz rule, we have

$$\displaystyle \begin{aligned}\|g_p\|{}_{W_{n,2}(1,\infty)}\leq\|h\|{}_{W_{n,\infty}(1,\infty)}\|f-\delta_{p-1}f\|{}_{W_{n,2}(1,\infty)}.\end{aligned}$$

For 0 ≤ k ≤ n, we have

$$\displaystyle \begin{aligned}(f-\delta_{p-1}f)^{(k)}=f^{(k)}-(p-1)^k\delta_{p-1}(f^{(k)}).\end{aligned}$$

Hence,

$$\displaystyle \begin{aligned} \big\|(f-\delta_{p-1}f)^{(k)}\big\|{}_{L_2(1,\infty)} &\leq\|f^{(k)}\|{}_{L_2(1,\infty)}+(p-1)^k\big\|\delta_{p-1}(f^{(k)})\big\|{}_{L_2(1,\infty)} \\&\leq\big(1+(p-1)^{k-\frac 12}\big)\cdot\|f^{(k)}\|{}_{L_2(0,\infty)}. \end{aligned} $$

Lemma 3

For g p defined as above, \(\|g_p\|{ }_{{W_{n,2}}}=\mathcal {O}\big ((p-1)^{-\frac 12}\big )\) as p ↓ 1.

Proof

As g p is even, we have

$$\displaystyle \begin{aligned}\|g_p\|{}_{{W_{n,2}}}\leq 2\big(\|g_p\|{}_{W_{n,2}(0,1)}+\|g_p\|{}_{W_{n,2}(1,\infty)}\big).\end{aligned}$$

The assertion follows from the preceding lemmas. □

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fedor Sukochev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Potapov, D., Sukochev, F., Vella, D., Zanin, D. (2019). A Residue Formula for Locally Compact Noncommutative Manifolds. In: Buskes, G., et al. Positivity and Noncommutative Analysis. Trends in Mathematics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-10850-2_24

Download citation

Publish with us

Policies and ethics