Skip to main content

Gene Family Evolution—An Algorithmic Framework

  • Chapter
  • First Online:

Part of the book series: Computational Biology ((COBO,volume 29))

Abstract

Most biological discoveries can only be made in light of evolution. In particular, functional annotation of genes is usually deduced from the orthology, paralogy, or xenology relations between genes, which are inferred from the comparison of a gene tree with a species tree. As sequence-only gene tree reconstruction methods often do not allow to confidently discriminate between trees, recent “integrative methods” include information from the species tree. The idea is to consider, in addition to a value measuring the fitness of a tree to a sequence alignment, a measure reflecting the evolution of a whole gene family through gene gain and loss. One such measure is the “reconciliation” cost, i.e., the cost of a gain and loss scenario explaining the incongruence between the gene and species tree. This chapter begins with a review of deterministic algorithms for computing reconciliation distances under various evolutionary models of gene family evolution. We then review integrative methods for correcting a gene tree, based on various strategies for exploring its neighborhood. The considered algorithms are those based on polytomy resolution, tree amalgamation and supertree reconstruction. The goal is to provide a comprehensive overview of existing methods with algorithms presented in concise form. The reader is referred to original papers for more details and proofs of complexity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    See Quest for Orthologs links at http://questfororthologs.org/.

References

  1. Aho, A., Yehoshua, S., Szymanski, T., Ullman, J.: Inferring a tree from lowest common ancestors with an application to the optimization of relational expressions. SIAM J. Comput. 10(3), 405–421 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  2. Akerborg, O., Sennblad, B., Arvestad, L., Lagergren, J.: Simultaneous bayesian gene tree reconstruction and reconciliation analysis. Proc. Nal. Acad. Sci. USA 106(14), 5714–5719 (2009)

    Article  Google Scholar 

  3. Altenhoff, A.M., Studer, R.A., Robinson-Rechavi, M., Dessimoz, C.: Resolving the ortholog conjecture: orthologs tend to be weakly, but significantly, more similar in function than paralogs. PLoS Comput. Biol. 8(5), e1002,514 (2012)

    Article  Google Scholar 

  4. Arvestad, L., Berglund, A., Lagergren, J., Sennblad, B.: Gene tree reconstruction and orthology analysis based on an integrated model for duplications and sequence evolution. In: RECOMB, pp. 326–335 (2004)

    Google Scholar 

  5. Bader, D., Moret, B., Yan, M.: A linear-time algorithm for computing inversion distance between signed permutations with an experimental study. J. Comput. Biol. 8(5), 483–491 (2001)

    Article  MATH  Google Scholar 

  6. Bansal, M., Alm, E., Kellis, M.: Efficient algorithms for the reconciliation problem with gene duplication, horizontal transfer and loss. Bioinformatics 28(12), i283–i291 (2012). https://doi.org/10.1093/bioinformatics/bts225

    Article  Google Scholar 

  7. Bansal, M., Burleigh, J., Eulenstein, O., Fernández-Baca, D.: Robinson-foulds supertrees. Alg. Mol. Biol. 5(18) (2010)

    Article  Google Scholar 

  8. Bansal, M., Wu, Y., Alm, E., Kellis., M.: Improved gene tree error-correction in the presence of horizontal gene transfer. Bioinformatics 31(8), 1211–1218 (2015). https://doi.org/10.1093/bioinformatics/btu806

    Article  Google Scholar 

  9. Bérard, S., Gallien, C., Boussau, B., Szollosi, G., Daubin, V., Tannier, E.: Evolution of gene neighborhoods within reconciled phylogenies. Bioinformatics 28(18), i382–i388 (2012)

    Article  Google Scholar 

  10. Berglund, A., Sjolund, E., Ostlund, G., Sonnhammer, E.: InParanoid 6: eukaryotic ortholog clusters with inparalogs. Nucl. Acid Res. 36 (2008)

    Article  Google Scholar 

  11. Bininda-Emonds, O. (ed.): Phylogenetic Supertrees combining information to reveal The Tree of Life. In: Computational Biology. Kluwer Academic, Dordrecht, The Netherlands (2004)

    MATH  Google Scholar 

  12. Boeckmann, B., Robinson-Rechavi, M., Xenarios, I., Dessimoz, C.: Conceptual framework and pilot study to benchmark phylogenomic databases based on reference gene trees. Brief. Bioinform. 12(5), 423–435 (2011)

    Article  Google Scholar 

  13. Bork, D., Cheng, R., Wang, J., Sung, J., Libeskind-Hadas, R.: On the computational complexity of the maximum parsimony reconciliation problem in the duplication-loss-coalescence model. Algorithms Mol. Biol. 12(1), 6 (2017)

    Article  Google Scholar 

  14. Boussau, B., Szöllősi, G., Duret, L., Gouy, M., Tannier, E., Daubin, V.: Genome-scale coestimation of species and gene trees. Genome Res. 23, 323–330 (2013)

    Article  Google Scholar 

  15. Chan, Y., Ranwez, V., Scornavacca, C.: Exploring the space of gene/species reconciliations with transfers. J. Math. Biol. 71(5), 1179–1209 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chan, Y., Ranwez, V., Scornavacca, C.: Inferring incomplete lineage sorting, duplications, transfers and losses with reconciliations. J. Theoret. Biol. 432, 1–13 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Chang, W., Eulenstein, O.: Reconciling gene trees with apparent polytomies. In: Chen, D., Lee, D.T. (eds.) Proceedings of the 12th Conference on Computing and Combinatorics (COCOON). Lecture Notes in Computer Science, vol. 4112, pp. 235–244 (2006)

    Google Scholar 

  18. Chen, K., Durand, D., Farach-Colton, M.: Notung: dating gene duplications using gene family trees. J. Comput. Biol. 7, 429–447 (2000)

    Article  Google Scholar 

  19. Constantinescu, M., Sankoff, D.: An efficient algorithm for supertrees. J. Classif. 12, 101–112 (1995)

    Article  MATH  Google Scholar 

  20. Darby, C.A., Stolzer, M., Ropp, P.J., Barker, D., Durand, D.: Xenolog classification. Bioinformatics 33(5), 640–649 (2016)

    Google Scholar 

  21. David, L., Alm, E.: Rapid evolutionary innovation during an Archaean genetic expansion. Nature 469 (2011)

    Article  Google Scholar 

  22. Doyon, J.P., Chauve, C., Hamel, S.: Space of gene/species trees reconciliations and parsimonious models. J. Comput. Biol 16(10), 1399–1418 (2009)

    Article  MathSciNet  Google Scholar 

  23. Doyon, J., Ranwez, V., Daubin, V., Berry, V.: Models, algorithms and programs for phylogeny reconciliation. Brief. Bioinform. 12(5), 392–400 (2011)

    Article  Google Scholar 

  24. Doyon, J.P., Scornavacca, C., Gorbunov, K.Y., Szöllősi, G.J., Ranwez, V., Berry, V.: An efficient algorithm for gene/species trees parsimonious reconciliation with losses, duplications and transfers. In: Tannier, E. (ed.) RECOMB International Workshop on Comparative Genomics, RECOMB-CG, pp. 93–108. Springer (2010)

    Chapter  Google Scholar 

  25. Durand, D., Halldórsson, B.V., Vernot, B.: A hybrid micro-macroevolutionary approach to gene tree reconstruction. J. Comput. Biol. 13(2), 320–335 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. El-Mabrouk, N., Ouangraoua, A.: A general framework for gene tree correction based on duplication-loss reconciliation. In: LIPIcs, Workshop on Algorithms in Bioinformatics (WABI), vol. 88, pp. 8:1–8:14 (2017)

    Google Scholar 

  27. Fitch, W.: Homology—a personal view on some of the problems. Trends Genet. 16(5), 227–231 (2000)

    Article  Google Scholar 

  28. Flicek, P., et al.: Ensembl 2012. Nucleic Acids Res. 40, D84–D90 (2012)

    Google Scholar 

  29. Gabaldón, T., Koonin, E.V.: Functional and evolutionary implications of gene orthology. Nat. Rev. Genet. 14(5), 360 (2013)

    Article  Google Scholar 

  30. Goodman, M., Czelusniak, J., Moore, G., Romero-Herrera, A., Matsuda, G.: Fitting the gene lineage into its species lineage, a parsimony strategy illustrated by cladograms constructed from globin sequences. Syst. Zool. 28, 132–163 (1979)

    Article  Google Scholar 

  31. Górecki, P., Eulenstein, O.: Algorithms: simultaneous error-correction and rooting for gene tree reconciliation and the gene duplication problem. BMC Bioinform. 13(Supp 10), S14 (2011)

    Google Scholar 

  32. Gorecki, P., Eulenstein, O., Tiuryn, J.: Unrooted tree reconciliation: a unified approach. IEEE/ACM Trans. Comput. Biol. Bioinform. 10(2), 522–536 (2013)

    Article  Google Scholar 

  33. Guindon, S., Gascuel, O.: A simple, fast and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52, 696–704 (2003)

    Article  Google Scholar 

  34. Hallett, M., Lagergren, J.: Efficient algorithms for lateral gene transfer problems. In: Proceedings of the Fifth Annual International Conference on Computational Biology, RECOMB-CG, pp. 149–156 (2001)

    Google Scholar 

  35. Höhna, S., Drummond, A.J.: Guided tree topology proposals for bayesian phylogenetic inference. Syst. Biol. 61(1), 1–11 (2011)

    Article  Google Scholar 

  36. Jacox, E., Chauve, C., Szöllősi, G.J., Ponty, Y., Scornavacca, C.: ecceTERA: comprehensive gene tree-species tree reconciliation using parsimony. Bioinformatics 32(13), 2056–2058 (2016). https://doi.org/10.1093/bioinformatics/btw105

    Article  Google Scholar 

  37. Jacox, E., Weller, M., Tannier, E., Scornavacca, C.: Resolution and reconciliation of non-binary gene trees with transfers, duplications and losses. Bioinformatics 33(7), 980–987 (2017)

    Google Scholar 

  38. Kordi, M., Bansal, M.: On the complexity of duplication-transfer-loss reconciliation with non-binary gene trees. IEEE/ACM Trans. Comput. Biol. Bioinform. (2016)

    Google Scholar 

  39. Kordi, M., Bansal, M.: Exact algorithms for duplication-transfer-loss reconciliation with non-binary gene trees. IEEE/ACM Trans. Comput. Biol. Bioinform. (2017)

    Google Scholar 

  40. Lafond, M., Chauve, C., Dondi, R., Manuel, El-Mabrouk, N.: Polytomy refinement for the correction of dubious duplications in gene trees. Bioinformatics 30(17), i519–i526 (2014)

    Article  Google Scholar 

  41. Lafond, M., Chauve, C., El-Mabrouk, N., Ouangraoua, A.: Gene tree construction and correction using supertree and reconciliation. IEEE/ACM Trans. Comput. Biol. Bioinform. (TCBB) PP(99), 12 pp. (2018)

    Google Scholar 

  42. Lafond, M., Noutahi, E., El-Mabrouk, N.: Efficient non-binary gene tree resolution with weighted reconciliation cos. In: 27th Annual Symposium on Combinatorial Pattern Matching (CPM) (2016)

    Google Scholar 

  43. Lafond, M., Ouangraoua, A., El-Mabrouk, N.: Reconstructing a supergenetree minimizing reconciliation. BMC Genomics 16, S4 (2015). Special issue of RECOMB-CG 2015

    Google Scholar 

  44. Lafond, M., Semeria, M., Swenson, K., Tannier, E., El-Mabrouk, N.: Gene tree correction guided by orthology. BMC Bioinform. 14(supp 15)(S5) (2013)

    Google Scholar 

  45. Lafond, M., Swenson, K., El-Mabrouk, N.: An optimal reconciliation algorithm for gene trees with polytomies. In: WABI. LNCS, vol. 7534, pp. 106–122 (2012)

    Google Scholar 

  46. Lafond, M., Swenson, K., El-Mabrouk, N.: Error detection and correction of gene trees. In: Models and Algorithms for Genome Evolution. Springer (2013)

    Google Scholar 

  47. Lai, H., Stolzer, M., Durand, D.: Fast heuristics for resolving weakly supported branches using duplication, transfers, and losses. In: RECOMB-CG, 22 pp. (2017)

    Google Scholar 

  48. Lartillot, N., Philippe, H.: A Bayesian mixture model for across-site heterogeneities in the amino-acid replacement process. Mol. Biol. Evol. 21(6), 1095–1109 (2004). http://dx.doi.org/10.1093/molbev/msh112

    Article  Google Scholar 

  49. Lechner, M., Findeiß, S., Steiner, L., Manja, M., Stadler, P., Prohaska, S.: Proteinortho: Detection of co-orthologs in large-scale analysis. BMC Bioinform. 12(1), 1 (2011)

    Google Scholar 

  50. Li, L., Stoeckert, C.J., Roos, D.: OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res. 13, 2178–2189 (2003)

    Article  Google Scholar 

  51. Libeskind-Hadas, R., Charleston, M.: On the computational complexity of the reticulate cophylogeny reconstruction problem. J. Comput. Biol. 16 (2009)

    Article  MathSciNet  Google Scholar 

  52. Maddison, W.P.: Gene trees in species trees. Syst. Biol. 46(3), 523–536 (1997)

    Article  Google Scholar 

  53. Massey, S., Churbanov, A., Rastogi, S., Liberles, D.: Characterizing positive and negative selection and their phylogenetic effects. Gene 418, 22–26 (2008)

    Article  Google Scholar 

  54. Moret, B., Warnow, T.: Molecular evolution: producing the biochemical data. In: Zimmer, E., Roalson, E. (eds.) Methods in Enzymology, Part B, vol. 395, pp. 673–700. Elsevier (2005)

    Google Scholar 

  55. Moret, B.M., Bader, D.A., Wyman, S., Warnow, T., Yan, M.: A new implementation and detailed study of breakpoint analysis. In: Biocomputing 2001, pp. 583–594. World Scientific (2000)

    Google Scholar 

  56. Ng, M., Wormald, N.: Reconstruction of rooted trees from subtrees. Discrete Appl. Math. 69, 19–31 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  57. Nguyen, N., Mirarab, S., Warnow, T.: MRL and SuperFine+MRL: new supertree methods. Algorithms Mol. Biol. 7(3) (2012)

    Article  Google Scholar 

  58. Nguyen, T.H., Ranwez, V., Pointet, S., Chifolleau, A.M.A., Doyon, J.P., Berry, V.: Reconciliation and local gene tree rearrangement can be of mutual profit. Algorithms Mol. Biol. 8(1), 12 (2013). http://dx.doi.org/10.1186/1748-7188-8-12

    Article  Google Scholar 

  59. Noutahi, E., El-Mabrouk, N.: GATC: a genetic algorithm for gene tree construction under the duplication-transfer-loss model of evolution. BMC Genomics 19(2), 102 (2018)

    Article  Google Scholar 

  60. Noutahi, E., Semeria, M., Lafond, M., Seguin, J., Gueguen, L., El-Mabrouk, N., Tannier, E.: Efficient gene tree correction guided by genome evolution. PLoS One 11(8) (2016)

    Article  Google Scholar 

  61. Ovadia, Y., Fielder, D., Conow, C., Libeskind-Hadas, R.: The cophylogeny reconstruction problem is NP-complete. J. Comput. Biol. 18(1), 59–65 (2011). https://doi.org/10.1089/cmb.2009.0240

    Article  MathSciNet  Google Scholar 

  62. Page, R.D., Cotton, J.A.: Genetree: a tool for exploring gene family evolution. In: Comparative Genomics, pp. 525–536. Springer (2000)

    Google Scholar 

  63. Pattengale, N., Gottlieb, E., Moret, B.: Efficiently computing the Robinson-Foulds metric. J. Comput. Biol. 14(6), 724–735 (2007)

    Article  MathSciNet  Google Scholar 

  64. Ranwez, V., Berry, V., Criscuolo, A., Fabre, P., Guillemot, S., Scornavacca, C., Douzery, E.: PhySIC: a veto supertree method with desirable properties. Syst. Biol. 56(5), 798–817 (2007)

    Article  Google Scholar 

  65. Ranwez, V., Criscuolo, A., Douzery, E.: SuperTriplets: a triplet-based supertree approach to phylogenomics. Bioinformatics 26(12), i115–i123 (2010)

    Article  Google Scholar 

  66. Rasmussen, M., Kellis, M.: A Bayesian approach for fast and accurate gene tree reconstruction. Mol. Biol. Evol. 28(1), 273–290 (2010)

    Article  Google Scholar 

  67. Rasmussen, M.D., Kellis, M.: Unified modeling of gene duplication, loss, and coalescence using a locus tree. Genome Res. 22(4), 755–765 (2012)

    Article  Google Scholar 

  68. Robinson, D., Foulds, L.: Comparison of phylogenetic trees. Math. Biosci. 53, 131–147 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  69. Rodrìguez-Ezpeleta, N., Brinkmann, H., Roure, B., Lartillot, N., Lang, B.F., Philippe, H.: Detecting and overcoming systematic errors in genome-scale phylogenies. Syst. Biol. 56(3), 389–399 (2007). http://dx.doi.org/10.1080/10635150701397643

    Article  Google Scholar 

  70. Rogers, J., Fishberg, A., Youngs, N., Wu, Y.C.: Reconciliation feasibility in the presence of gene duplication, loss, and coalescence with multiple individuals per species. BMC Bioinform. 18(1), 292 (2017)

    Article  Google Scholar 

  71. Ronquist, F., Huelsenbeck, J.: MrBayes3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574 (2003)

    Article  Google Scholar 

  72. Roshan, U., Moret, B., Warnow, T., Williams, T.: Performance of supertree methods on various dataset decompositions. In: Bininda-Edmonds, O. (ed.) Phylogenetic Supertrees: Combining Information to Reveal the Tree of Life, pp. 301–328. Springer (2004)

    Google Scholar 

  73. Scornavacca, C., van Iersel, L., Kelk, S., Bryant, D.: The agreement problem for unrooted phylogenetic trees is FPT. J. Graph Algorithms Appl. 18(3), 385–392 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  74. Scornavacca, C., Jacox, E., Szollosi, G.: Joint amalgamation of most parsimonious reconciled gene trees. Bioinformatics 31(6), 841–848 (2015)

    Article  Google Scholar 

  75. Semple, C.: Reconstructing minimal rooted trees. Discrete Appl. Math. 127(3) (2003)

    Article  MathSciNet  MATH  Google Scholar 

  76. Sjöstrand, J., Tofigh, A., Daubin, V., Arvestad, L., Sennblad, B., Lagergren, J.: A Bayesian method for analyzing lateral gene transfer. Sys. Biol. 63(3), 409–420 (2014)

    Article  Google Scholar 

  77. Skovgaard, M., Kodra, J., Gram, D., Knudsen, S., Madsen, D., Liberles, D.: Using evolutionary information and ancestral sequences to understand the sequence-function relationship in GLP-1 agonists. J. Mol. Biol. 363, 977–988 (2006)

    Article  Google Scholar 

  78. Stamatakis, A.: RAxML-VI-HPC: maximum likelihood-based phylogenetic analysis with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690 (2006)

    Article  Google Scholar 

  79. Steel, M.: The complexity of reconstructing trees from qualitative characters and subtrees. J. Classif. 9, 91–116 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  80. Steel, M., Rodrigo, A.: Maximum likelihood supertrees. Syst. Biol. 57(2), 243–250 (2008)

    Article  Google Scholar 

  81. Stolzer, M., Lai, H., Xu, M., Sathaye, D., Vernot, B., Durand, D.: Inferring duplications, losses, transfers and incomplete lineage sorting with nonbinary species trees. Bioinformatics 28(18), i409–i415 (2012)

    Article  Google Scholar 

  82. Swenson, K.M., El-Mabrouk, N.: Gene trees and species trees: irreconcilable differences. BMC Bioinform. 13(Suppl 19), S15 (2012)

    Google Scholar 

  83. Swenson, M., Suri, R., Linder, C., Warnow, T.: SuperFine: fast and accurate supertree estimation. Sys. Biol. 61(2), 214–227 (2012). Special issue RECOMB-CG 2012

    Article  Google Scholar 

  84. Szöllősi, G., Rosikiewicz, W., Boussau, B., Tannier, E., Daubin, V.: Efficient exploration of the space of reconciled gene trees. Syst. Biol. 62(6), 901–912 (2013). http://dx.doi.org/10.1093/sysbio/syt054

    Article  Google Scholar 

  85. Szöllősi, G., E., Tannier, Daubin, V., Boussau, B.: The inference of gene trees with species trees. Syst. Biol. 64(1), e42–e62 (2014)

    Article  Google Scholar 

  86. Szöllősi, G.J., Tannier, E., Lartillot, N., Daubin, V.: Lateral gene transfer from the dead. Syst. Biol. 62(3), 386–397 (2013)

    Article  Google Scholar 

  87. Tatusov, R., Galperin, M., Natale, D., Koonin, E.: The COG database: a tool for genome-scale analysis of protein functions. Nucleic Acids Res. 28, 33–36 (2000)

    Article  Google Scholar 

  88. Taylor, S., de la Cruz, K., Porter, M., Whiting, M.: Characterization of the long-wavelength opsin from Mecoptera and Siphonaptera: does a flea see? Mol. Biol. Evol. 22, 1165–1174 (2005)

    Article  Google Scholar 

  89. Thomas, P.: GIGA: a simple, efficient algorithm for gene tree inference in the genomic age. BMC Bioinform. 11, 312 (2010)

    Article  Google Scholar 

  90. Tofigh, A.: Using trees to capture reticulate evolution: lateral gene transfers and cancer progression. Ph.D. thesis, KTH Royal Institute of Technology, Sweden (2009)

    Google Scholar 

  91. Tofigh, A., Hallett, M., Lagergren, J.: Simultaneous identification of duplications and lateral gene transfers. IEEE/ACM Trans. Comput. Biol. Bioinform. 8(2), 517–535 (2011). https://doi.org/10.1109/TCBB.2010.14

    Article  Google Scholar 

  92. Vernot, B., Stolzer, M., Goldman, A., Durand, D.: Reconciliation with non-binary species trees. J. Comput. Biol. 15, 981–1006 (2009)

    Article  MathSciNet  Google Scholar 

  93. Wu, T., Zhang, L.: Structural properties of the reconciliation space and their applications in enumerating nearly-optimal reconciliations between a gene tree and a species tree. BMC Bioinform. 12, S7 (2011)

    Google Scholar 

  94. Wu, Y., Rasmussen, M., Bansal, M., Kellis, M.: TreeFix: statistically informed gene tree error correction using species trees. Syst. Biol. 62(1), 110–120 (2013)

    Article  Google Scholar 

  95. Wu, Y., Rasmussen, M., Bansal, M., Kellis, M.: Most parsimonious reconciliation in the presence of gene duplication, loss, and deep coalescence using labeled coalescent trees. Genome Res. 24, 475–486 (2014)

    Article  Google Scholar 

  96. Zhang, L.: On Mirkin-Muchnik-Smith conjecture for comparing molecular phylogenies. J. Comput. Biol. 4, 177–188 (1997)

    Article  Google Scholar 

  97. Zheng, Y., Wu, T., Zhang, L.: Reconciliation of gene and species trees with polytomies (2012). arXiv:1201.3995

  98. Zheng, Y., Zhang, L.: Reconciliation with non-binary gene trees revisited. In: Proceedings of RECOMB. Lecture Notes in Computer Science, vol. 8394, pp. 418–432 (2014)

    Google Scholar 

  99. Zmasek, C.M., Eddy, S.R.: A simple algorithm to infer gene duplication and speciiation events on a gene tree. Bioinformatics 17, 821–828 (2001)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of the Fonds de Recherche du Québec Nature et Technologie (FRQNT) and of the Natural Sciences and Engineering Research Council (NSERC) (Discovery Grant RGPIN-249834).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadia El-Mabrouk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

El-Mabrouk, N., Noutahi, E. (2019). Gene Family Evolution—An Algorithmic Framework. In: Warnow, T. (eds) Bioinformatics and Phylogenetics. Computational Biology, vol 29. Springer, Cham. https://doi.org/10.1007/978-3-030-10837-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10837-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10836-6

  • Online ISBN: 978-3-030-10837-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics