Skip to main content

Computational Models for Cancer Phylogenetics

  • Chapter
  • First Online:

Part of the book series: Computational Biology ((COBO,volume 29))

Abstract

Cancer development has long been recognized as a product of aberrant evolution of cell populations, inspiring the idea that phylogenetic algorithms could be a powerful tool for reconstructing progression processes in cancer. Translating that intuition into practice, however, has required extensive work on adapting phylogenetic models and algorithms to represent more accurately the many ways tumor evolution is distinct from classic species evolution. The result has been a large and growing body of problems and theory on phylogenetics as it applies specifically to cancers. This chapter surveys some of the key ideas and variants on phylogeny problem that have arisen in the development of tumor phylogeny methods. Its purpose is to introduce readers to some of the space of approaches in current practice in phylogenetics and help them appreciate how models have developed, and continue to develop, to better capture the peculiar nature of evolution in cancers.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Alexandrov, L., Nik-Zainal, S., Wedge, D.C., Aparicio, S.A.J.R., Behjati, S., Biankin, A.V., Bignell, G.R., Bolli, N., Å. Borg, Børresen-Dale, A., Boyault, S., Burkhardt, B., Butler, A.P., Caldas, C., Davies, H.R., Desmedt, C., Eils, R., Eyfjörd, J.E., Foekens, J.A., Greaves, M., Hosoda, F., Hutter, B., Ilicic, T., Imbeaud, S., Imielinski, M., Jger, N., Jones, D.T.W., Jones, D., Knappskog, S., Kool, M., Lakhani, S.R., López-Otín, C., Martin, S., Munsh, N.C., Nakamura, H., Northcott, P.A., Pajic, M., Papaemmanuil, E., Paradiso, A., Pearson, J.V., Puente, X.S., Raine, K., Ramakrishna, M., Richardson, A.L., Richter, J., Rosenstiel, P., Schlesner, M., Schumacher, T.N., Spa, P.N., Teague, J.W., Totoki, Y., Tutt, A.N.J., Valdés-Mas, R., van Buuren, M.M., van ’t Veer, L., Vincent-Salomon, A., Waddell, N., Yates, L.R., Australian Pancreatic Cancer Genome Initiative, ICGC Breast Cancer Consortium, ICGC MMML-Seq Consortium, ICGC PedBrain, Zucman-Rossi, J., Futreal, P.A., McDermott, U., Lichter, P., Meyerson, M., Grimmond, S.M., Siebert, R., Campo, E., Tatsuhiro: Signatures of mutation processes in human cancers. Nature 500(7463), 415–421 (2013)

    Google Scholar 

  2. Alexandrov, L.B., Stratton, M.R.: Mutational signatures: the patterns of somatic mutations hidden in cancer genomes. Curr. Opin. Genet. Devel. 24, 52–60 (2014)

    Article  Google Scholar 

  3. Attolini, C.S., Cheng, Y.K., Beroukhim, R., Getz, G., Abdel-Wahab, O., Levine, R.L., Mellinghoff, I.K., Michor, F.: A mathematical framework to determine the temporal sequence of somatic genetic events in cancer. Proc. Natl. Acad. Sci. USA 107(41), 17604–17609 (2010)

    Article  MATH  Google Scholar 

  4. Bader, D.A., Moret, B.M., Yan, M.: A linear-time algorithm for computing inversion distance between signed permutations with an experimental study. J. Comput. Biol. 8(5), 483–491 (2001)

    Article  MATH  Google Scholar 

  5. Bandelt, H., Forster, P., Röhl, A.: Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 16(1), 37–48 (1999)

    Article  Google Scholar 

  6. Bandelt, H.J., Forster, P., Sykes, B.C., Richards, M.B.: Mitochondrial portraits of human populations using median networks. Genetics 141(2), 743–753 (1995)

    Google Scholar 

  7. Beerenwinkel, N., Rahnenführer, J., Däumer, M., Hoffmann, D., Kaiser, R., Selbig, J., Lengauer, T.: Learning multiple evolutionary pathways from cross-sectional data. J. Comput. Biol. 12(6), 584–598 (2005)

    Article  Google Scholar 

  8. Beerenwinkel, N., Rahnenführer, J., Kaiser, R., Hoffmann, D., Selbig, J., Lengauer, T.: Mtreemix: a software package for learning and using mixture models of mutagenetic trees. Bioinformatics 21(9), 2106–2107 (2005)

    Article  Google Scholar 

  9. Beerenwinkel, N., Schwarz, R.F., Gerstung, M., Markowetz, F.: Cancer evolution: mathematical models and computational inference. Syst. Biol. 64(1), e1–e25 (2015)

    Article  Google Scholar 

  10. Campbell, P.J., Pleasance, E.D., Stephens, P.J., Dicks, E., Rance, R., Goodhead, I., Follows, G.A., Green, A.R., Futreal, P.A., Stratton, M.R.: Subclonal phylogenetic structures in cancer revealed by ultra-deep sequencing. Proc. Natl. Acad. Sci. USA 105(35), 13081–13086 (2008)

    Article  Google Scholar 

  11. Catanzaro, D., Ravi, R., Schwartz, R.: A mixed integer linear programming model to reconstruct phylogenies from single nucleotide polymorphism haplotypes under the maximum parsimony criterion. Algorithms Mol. Biol. 8(1), 3 (2013)

    Article  Google Scholar 

  12. Cavalli-Sforza, L.L., Edwards, A.W.: Phylogenetic analysis: models and estimation procedures. Evolution 21(3), 550–570 (1967)

    Article  Google Scholar 

  13. Chowdhury, S.A., Gertz, E.M., Wangsa, D., Heselmeyer-Haddad, K., Ried, T., Schäffer, A.A., Schwartz, R.: Inferring models of multiscale copy number evolution for single-tumor phylogenetics. Bioinformatics 31(12), i258–i267 (2015)

    Article  Google Scholar 

  14. Chowdhury, S.A., Shackney, S.E., Heselmeyer-Haddad, K., Ried, T., Schäffer, A.A., Schwartz, R.: Phylogenetic analysis of multiprobe fluorescence in situ hybridization data from tumor cell populations. Bioinformatics 29(13), i189–i198 (2013)

    Article  Google Scholar 

  15. Chowdhury, S.A., Shackney, S.E., Heselmeyer-Haddad, K., Ried, T., Schäffer, A.A., Schwartz, R.: Algorithms to model single gene, single chromosome, and whole genome copy number changes jointly in tumor phylogenetics. PLoS Comp. Biol. 10(7), e1003740 (2014)

    Article  Google Scholar 

  16. Christinat, Y., Moret, B.M.: Inferring transcript phylogenies. In: BMC Bioinform. (BioMed Central) 13(9), S1 (2012)

    Google Scholar 

  17. Deisboeck, T.S., Wang, Z., Macklin, P., Cristini, V.: Multiscale cancer modeling. Annu. Rev. Biomed. Eng. 13, 127–155 (2011)

    Article  Google Scholar 

  18. Deshwar, A.G., Vembu, S., Yung, C.K., Jang, G.H., Stein, L., Morris, Q.: PhyloWGS: reconstructing subclonal composition and evolution from whole-genome sequencing of tumors. Genome Biol. 16, 35 (2015)

    Article  Google Scholar 

  19. Desper, R., Jiang, F., Kallioniemi, O.P., Moch, H., Papadimitriou, C.H., Schäffer, A.A.: Inferring tree models of oncogenesis from comparative genomic hybridization data. J. Comput. Biol. 6(1), 37–51 (1999)

    Article  Google Scholar 

  20. Desper, R., Jiang, F., Kallioniemi, O.P., Moch, H., Papadimitriou, C.H., Schäffer, A.A.: Distance-based reconstruction of tree models for oncogenesis. J. Comput. Biol. 7(6), 789–803 (2000)

    Article  Google Scholar 

  21. Desper, R., Khan, J., Schäffer, A.A.: Tumor classification using phylogenetic methods on expression data. J. Theor. Biol. 228(4), 477–496 (2004)

    Article  MathSciNet  Google Scholar 

  22. Eaton, J., Wang, J., Schwartz, R.: Deconvolution and phylogeny inference of structural variations in tumor genomic samples. Bioinformatics (2018). In press

    Google Scholar 

  23. El-Kebir, M., Oesper, L., Acheson-Field, H., Raphael, B.J.: Reconstruction of clonal trees and tumor composition from multi-sample sequencing data. Bioinformatics 31(12), i62–i70 (2015)

    Article  Google Scholar 

  24. El-Kebir, M., Raphael, B.J., Shamir, R., Sharan, R., Zaccaria, S., Zehavi, M., Zeira, R.: Complexity and algorithms for copy-number evolution problems. Algorithms Mol. Biol. 12(1), 13 (2017)

    Article  MATH  Google Scholar 

  25. El-Kebir, M., Satas, G., Oesper, L., Raphael, B.J.: Inferring the mutational history of a tumor using multi-state perfect phylogeny mixtures. Cell Syst. 3(1), 43–53 (2016)

    Article  Google Scholar 

  26. Fearon, E., Vogelstein, B.: A genetic model for colorectal tumorigenesis. Cell 61(5), 759–767 (1990)

    Article  Google Scholar 

  27. Felsenstein, J.: PHYLIP-phylogeny inference package (version 3.2). Cladistics 5(163), 6 (1989)

    Google Scholar 

  28. Felsenstein, J.: Inferring Phylogenies. Sinauer Associates Inc, Sunderland, MA (2004)

    Google Scholar 

  29. Frumkin, D., Wasserstrom, A., Itzkovitz, S., Stern, T., Harmelin, A., Eilam, R., Rechavi, G., Shapiro, E.: Cell lineage analysis of a mouse tumor. Cancer Res. 68(14), 5924–5931 (2008)

    Article  Google Scholar 

  30. Garey, M.R., Johnson, D.S.: The rectilinear Steiner tree problem is NP-complete. SIAM J. Appl. Math. 32(4), 826–834 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  31. Gerlinger, M., Rowan, A.J., Horswell, S., Larkin, J., Endesfelder, D., Gronroos, E., Martinez, P., Matthews, N., Stewart, A., Tarpey, P., Varela, I., Phillimore, B., Begum, S., McDonald, N.Q., Butler, A., Jones, D., Raine, K., Latimer, C., Santos, C.R., Nohadani, M., Eklund, A.C., Spencer-Dene, B., Clark, G., Pickering, L., Stamp, G., Gore, M., Szallasi, Z., Downward, J., Futreal, P.A., Swanton, C.: Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 366(10), 883–892 (2012)

    Article  Google Scholar 

  32. Gertz, E.M., Chowdhury, S.A., Lee, W., Wangsa, D., Heselmeyer-Haddad, K., Ried, T., Schwartz, R., Schäffer, A.A.: FISHtrees 3.0: Tumor phylogenetics using a ploidy probe. PLoS ONE 11(6), e0158569 (2016)

    Article  Google Scholar 

  33. Greaves, M., Maley, C.C.: Clonal evolution in cancer. Nature 481(7381), 306–313 (2012)

    Article  Google Scholar 

  34. Gusfield, D.: Haplotyping as perfect phylogeny: conceptual framework and efficient solutions. In: Proceedings of the Sixth Annual International Conference on Computational Biology, pp. 166–175. ACM (2002)

    Google Scholar 

  35. Hajirasouliha, I., Mahmoody, A., Raphael, B.J.: A combinatorial approach for analyzing intra-tumor heterogeneity from high-throughput sequencing data. Bioinformatics 30(12), i78–i86 (2014)

    Article  Google Scholar 

  36. Halperin, E., Eskin, E.: Haplotype reconstruction from genotype data using imperfect phylogeny. Bioinformatics 20(12), 1842–1849 (2004)

    Article  Google Scholar 

  37. Hastings, P., Lupski, J.R., Rosenberg, S.M., Ira, G.: Mechanisms of change in gene copy number. Nat. Rev. Genet. 10(8), 551–564 (2009)

    Article  Google Scholar 

  38. Jiang, Y., Qiu, Y., Minn, A.J., Zhang, N.R.: Assessing intratumor heterogeneity and tracking longitudinal and spatial clonal evolutionary history by next-generation sequencing. Proc. Natl. Acad. Sci. USA 113(37), E5528–E5537 (2016). https://doi.org/10.1073/pnas.1522203113

    Article  Google Scholar 

  39. Jiao, W., Vembu, S., Deshwar, A.G., Stein, L., Morris, Q.: Inferring clonal evolution of tumors from single nucleotide somatic mutations. BMC Bioinform. 15, 35 (2014)

    Article  Google Scholar 

  40. Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of Computer Computations, pp. 85–103. Springer (1972)

    Google Scholar 

  41. Korbel, J.O., Kim, P.M., Chen, X., Urban, A.E., Weissman, S., Snyder, M., Gerstein, M.B.: The current excitement about copy-number variation: how it relates to gene duplications and protein families. Curr. Opin. Struct. Biol. 18(3), 366–374 (2008)

    Article  Google Scholar 

  42. Malikic, S., Jahn, K., Kuipers, J., Sahinalp, C., Beerenwinkel, N.: Integrative inference of subclonal tumour evolution from single-cell and bulk sequencing data. bioRxiv (2017). https://doi.org/10.1101/234914

  43. Malikic, S., McPherson, A.A., Donmez, N., Sahinalp, C.S.: Clonality inference in multiple tumor samples using phylogeny. Bioinformatics 31(9), 1349–1356 (2015)

    Article  Google Scholar 

  44. Mardis, E.R., Wilson, R.K.: Cancer genome sequencing: a review. Hum. Mol. Gen. 18(R2), R163–R168 (2009)

    Article  Google Scholar 

  45. Merlo, L.M.F., Pepper, J.W., Ried, B.J., Maley, C.C.: Cancer as an evolutionary and ecological process. Nat. Rev. Cancer 6(12), 924–935 (2006)

    Article  Google Scholar 

  46. Miller, C.A., White, B.S., Dees, N.D., Griffith, M., Welch, J.S., Griffith, O.L., R., V., Tomasson, M.H., Graubert, T.A., Walter, M.J., Ellis, M.J., Schierding, W., DiPersio, J.F., Ley, T.J., Mardis, E.R., Wilson, R.K., Ding, L.: SciClone: inferring clonal architecture and tracking the spatial and temporal patterns of tumor evolution. PLoS Comput. Biol. 10(8), e1003665 (2014)

    Article  Google Scholar 

  47. Misra, N., Szczurek, E., Vingron, M.: Inferring the paths of somatic evolution in cancer. Bioinformatics 30(17), 2456–2463 (2014)

    Article  Google Scholar 

  48. Moret, B.M.: Towards a discipline of experimental algorithmics. In: Data Structures, Near Neighbor Searches, and Methodology: Fifth and Sixth DIMACS Implementation Challenges, Vol. 59, pp. 197–213 (2002)

    Google Scholar 

  49. Moret, B.M., Shapiro, H.D.: An empirical analysis of algorithms for constructing a minimum spanning tree. In: Workshop on Algorithms and Data Structures, pp. 400–411. Springer (1991)

    Google Scholar 

  50. Moret, B.M., Shapiro, H.D.: Algorithms and experiments: the new (and old) methodology. J. Univ. Comput. Sci. 7(5), 434–446 (2001)

    MathSciNet  MATH  Google Scholar 

  51. Nair, N.U., Lin, Y., Manasovska, A., Antic, J., Grnarova, P., Sahu, A.D., Bucher, P., Moret, B.M.: Study of cell differentiation by phylogenetic analysis using histone modification data. BMC Bioinform. 15(1), 269 (2014)

    Article  Google Scholar 

  52. Navin, N., Kendall, J., Troge, J., Andrews, P., Rodgers, L., McIndoo, J., Cook, K., Stepansky, A., Levy, D., Esposito, D., et al.: Tumour evolution inferred by single-cell sequencing. Nature 472(7341), 90–94 (2011)

    Article  Google Scholar 

  53. Navin, N., Krasnitz, A., Rodgers, L., Cook, K., Meth, J., Kendall, J., Riggs, M., Eberling, Y., Troge, J., Grubor, V., Levy, D., Lundin, P., Må nér, S., Zetterberg, A., Hicks, J., Wigler, M.: Inferring tumor progression from genomic heterogeneity. Genome Res. 20(1), 68–80 (2010)

    Article  Google Scholar 

  54. Nowell, P.C.: The clonal evolution of tumor cell populations. Science 194(4260), 23–28 (1976)

    Article  Google Scholar 

  55. Park, Y., Shackney, S., Schwartz, R.: Network-based inference of cancer progression from microarray data. IEEE/ACM Trans. Comput. Biol. Bioinform. 6(2), 200–212 (2009)

    Article  Google Scholar 

  56. Pattengale, N.D., Alipour, M., Bininda-Emonds, O.R., Moret, B.M., Stamatakis, A.: How many bootstrap replicates are necessary? J. Comput. Biol. 17(3), 337–354 (2010)

    Article  MathSciNet  Google Scholar 

  57. Pennington, G., Smith, C.A., Shackney, S., Schwartz, R.: Expectation-maximization method for reconstructing tumor phylogenies from single-cell data. In: Computational Systems Bioinformatics Conference, pp. 371–380 (2006)

    Google Scholar 

  58. Pennington, G., Smith, C.A., Shackney, S., Schwartz, R.: Reconstructing tumor phylogenies from heterogeneous single-cell data. J. Bioinform. Comput. Biol. 5(2a), 407–427 (2007)

    Article  Google Scholar 

  59. Popic, V., Salari, R., Hajirasouliha, I., Kashef-Haghighi, D., West, R.B., Batzoglou, S.: Fast and scalable inference of multi-sample cancer lineages. Genome Biol. 16, 91 (2015)

    Article  Google Scholar 

  60. Potter, N.E., Ermini, L., Papaemmanuil, E., Cazzaniga, G., Vijayaraghavan, G., Titley, I., Ford, A., Campbell, P., L., K., Greaves, M.: Single cell mutational profiling and clonal phylogeny in cancer. Genome Res. 23(12), 2115–2125 (2013)

    Article  Google Scholar 

  61. Riester, M., Attolini, C., Downey, R.J., Singer, S., Michor, F.: A differentiation-based phylogeny of cancer subtypes. PLoS Comp. Biol. 6(5), e1000,777 (2010)

    Article  Google Scholar 

  62. Roman, T., Nayyeri, A., Fasy, B.T., Schwartz, R.: A simplicial complex-based approach to unmixing tumor progression data. BMC Bioinform. 16(1), 254 (2015)

    Article  Google Scholar 

  63. Roman, T., Xie, L., Schwartz, R.: Automated deconvolution of structured mixtures from heterogeneous tumor genomic data. PLoS Comput. Biol. 13(10), e1005815 (2017)

    Article  Google Scholar 

  64. Schwartz, R., Schäffer, A.A.: The evolution of tumour phylogenetics: principles and practice. Nat. Rev. Genet. 18(4), 213 (2017)

    Article  Google Scholar 

  65. Schwartz, R., Shackney, S.E.: Applying unmixing to gene expression data for tumor phylogeny inference. BMC Bioinform. 11, 42 (2010)

    Article  Google Scholar 

  66. Schwarz, R.F., Trinh, A., Sipos, B., Brenton, J.D., Goldman, N., Markowetz, F.: Phylogenetic quantification of intra-tumour heterogeneity. PLoS Comput. Biol. 10(4), e1003535 (2014)

    Article  Google Scholar 

  67. Shlush, L.I., Chapal-Ilani, N., Adar, R., Pery, N., Maruvka, Y., Shouval, Spiro A., R., Rowe, J., Tzukerman, M., Bercovich, D., Izraeli, S., Marcucci, G., Bloomfield, C., Zuckerman T. Skorecki, K., Shapiro, E.: Cell lineage analysis of acute leukemia relapse uncovers the role of replication-rate heterogeneity and microsatellite instability. Blood 120(3), 603–612 (2012)

    Article  Google Scholar 

  68. Sottoriva, A., Spiteri, I., Shibata, D., Curtis, C., Tavaré, S.: Single-molecule genomic data delineate patient-specific tumor profiles and cancer stem cell organization. Cancer Res. 73(1), 41–49 (2013)

    Article  Google Scholar 

  69. Sridhar, S., Blelloch, G.E., Ravi, R., Schwartz, R.: Optimal imperfect phylogeny reconstruction and haplotyping (IPPH). In: Computational Systems Bioinformatics, pp. 199–210. World Scientific (2006)

    Google Scholar 

  70. Sridhar, S., Dhamdhere, K., Blelloch, G., Halperin, E., Ravi, R., Schwartz, R.: Algorithms for efficient near-perfect phylogenetic tree reconstruction in theory and practice. IEEE/ACM Trans. Comput. Biol. Bioinform. 4(4), 561–571 (2007)

    Article  Google Scholar 

  71. Sridhar, S., Lam, F., Blelloch, G.E., Ravi, R., Schwartz, R.: Mixed integer linear programming for maximum-parsimony phylogeny inference. IEEE/ACM Trans. Comput. Biol. Bioinform. 5(3), 323–331 (2008)

    Article  Google Scholar 

  72. Storchova, Z., Pellman, D.: From polyploidy to aneuploidy, genome instability and cancer. Nat. Rev. Mol. Cell Biol. 5(1), 45 (2004)

    Article  Google Scholar 

  73. Swenson, K.M., Rajan, V., Lin, Y., Moret, B.M.: Sorting signed permutations by inversions in \(o(n \log n) \) time. In: Annual International Conference on Research in Computational Molecular Biology (RECOMB), pp. 386–399. Springer (2009)

    Google Scholar 

  74. Tolliver, D., Tsourakakis, C., Subramanian, A., Shackney, S., Schwartz, R.: Robust unmixing of tumor states in array comparative genomic hybridization data. Bioinformatics 26(12), i106–i114 (2010)

    Article  Google Scholar 

  75. Tsao, J., Zhang, J., Salovaara, R., Li, Z.H., Järvinen, H.J., Mecklin, J., Aaltonen, L., Shibata, D.: Tracing cell fates in human colorectal tumors from somatic microsatellite mutations: evidence of adenomas with stem cell architecture. Am. J. Pathol. 153(4), 1189–1200 (1998)

    Article  Google Scholar 

  76. Weinberg, R.: The Biology of Cancer. Garland science (2013)

    Google Scholar 

  77. Wilgenbusch, J.C., Swofford, D.: Inferring evolutionary trees with paup. Curr. Protoc. Bioinform. 6–4 (2003)

    Google Scholar 

  78. Williams, T.L., Moret, B.M.: An investigation of phylogenetic likelihood methods. In: Proceedings of the Third IEEE Symposium on Bioinformatics and Bioengineering, pp. 79–86. IEEE (2003)

    Google Scholar 

  79. Xu, X., Hou, Y., Yin, X., Bao, L., Tang, A., Song, L., Li, F., Tsang, S., Wu, K., Wu, H., He, W., Zeng, L., Xing, M., Wu, R., Jiang, H., Liu, X., Cao, D., Guo, G., Hu, X., Gui, Y., Li, Z., Xie, W., Sun, X., Shi, M., Cai, Z., Wang, B., Zhong, M., Li, J., Lu, Z., Gu, N., Zhang, X., Goodman, L., Bolund, L., Wang, J., Yang, H., Kristiansen, K., Dean, M., Li, Y., Wang, J.: Single-cell exome sequencing reveals single-nucleotide mutation characteristics of a kidney tumor. Cell 148(5), 886–895 (2012)

    Article  Google Scholar 

  80. Ye, M., Racz, G.C., Jiang, Q., Zhang, X., Moret, B.M.: NEMo: an evolutionary model with modularity for PPI networks. In: International Symposium on Bioinformatics Research and Applications, pp. 224–236. Springer (2016)

    Google Scholar 

  81. Yuan, K., Sakoparnig, T., Markowetz, F., Beerenwinkel, N.: BitPhylogeny: a probabilistic framework for reconstructing intra-tumor phylogenies. Genome Biol. 16, 36 (2015)

    Article  Google Scholar 

  82. Zaccaria, S., El-Kebir, M., Klau, G.W., Raphael, B.J.: The copy-number tree mixture deconvolution problem and applications to multi-sample bulk sequencing tumor data. In: International Conference on Research in Computational Molecular Biology (RECOMB), pp. 318–335. Springer (2017)

    Google Scholar 

  83. Zaccaria, S., El-Kebir, M., Klau, G.W., Raphael, B.J.: Phylogenetic copy-number factorization of multiple tumor samples. J. Comput. Biol. (2018). https://doi.org/10.1089/cmb.2017.0253

    Article  MathSciNet  Google Scholar 

  84. Zack, T.I., Schumacher, S.E., Carter, S.L., Cherniack, A.D., Saksena, G., Tabak, B., Lawrence, M.S., Zhang, C.Z., Wala, J., Mermel, C.H., Sougnez, C., Gabriel, S.B., Hernandez, B., Shen, H., Laird, P.W., Getz, G., Meyerson, M., Beroukhim, R.: Pan-cancer patterns of somatic copy number alteration. Nat. Genet. 45(10), 1134 (2013)

    Article  Google Scholar 

  85. Zafar, H., Navin, N., Nakhleh, L., Chen, K.: Computational approaches for inferring tumor evolution from single-cell genomic data. Curr. Opin. Syst. Biol. (2017)

    Google Scholar 

  86. Zakov, S., Kinsella, M., Bafna, V.: An algorithmic approach for breakage-fusion-bridge detection in tumor genomes. Proc. Natl. Acad. Sci. USA 110(14), 5546–5551 (2013)

    Article  MathSciNet  Google Scholar 

  87. Zeira, R., Zehavi, M., Shamir, R.: A linear-time algorithm for the copy number transformation problem. J. Comput. Biol. 24(12), 1179–1194 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Russell Schwartz was supported in part by U.S. National Institutes of Health award R21CA216452 and Pennsylvania Dept. of Health award 4100070287. The Pennsylvania Department of Health specifically disclaims responsibility for any analyses, interpretations or conclusions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Russell Schwartz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schwartz, R. (2019). Computational Models for Cancer Phylogenetics. In: Warnow, T. (eds) Bioinformatics and Phylogenetics. Computational Biology, vol 29. Springer, Cham. https://doi.org/10.1007/978-3-030-10837-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10837-3_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10836-6

  • Online ISBN: 978-3-030-10837-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics