Skip to main content

Nanoparticles for Biosensing

  • Chapter
  • First Online:
Nanomaterials for Advanced Biological Applications

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 104))

Abstract

In spite of all advances made in medical intervention over the past few decades, efficient curing of many diseases such as diabetes, Alzheimer’s disease, cardiovascular disease, cancer disease etc. has remained a challenge (Bast 2004). Delayed onset of treatment is one of the main contributors to the failure in treating these diseases to a satisfactory extent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Antosiewicz, A., Senkara, E., Cieśla, J.: Quartz crystal microbalance with dissipation and microscale thermophoresis as tools for investigation of protein complex formation between thymidylate synthesis cycle enzymes. Biosens. Bioelectron. 64, 36–42 (2015)

    Article  Google Scholar 

  • Arnold, M.A., Meyerhoff, M.E.: Recent advances in the development and analytical applications of biosensing probes. Crit. Rev. Anal. Chem. 20(3), 149–196 (1988)

    Article  Google Scholar 

  • Barhoumi, H., Maaref, A., Rammah, M., Martelet, C., Jaffrezic, N., Mousty, C., Vial, S., Forano, C.: Urea biosensor based on Zn3Al–urease layered double hydroxides nanohybrid coated on insulated silicon structures. Mater. Sci. Eng. C 26(2–3), 328–333 (2006)

    Article  Google Scholar 

  • Bast, R.C., Jr.: Early detection of ovarian cancer: new technologies in pursuit of a disease that is neither common nor rare. Trans. Am. Clin. Climatol. Assoc. 115, 233–247 (2004); discussion 247–248

    Google Scholar 

  • Belkin, S.: Microbial whole-cell sensing systems of environmental pollutants. Curr. Opin. Microbiol. 6(3), 206–212 (2003)

    Article  Google Scholar 

  • Bertozzi, C.R., Kiessling, L.L.: Chemical glycobiology. Science 291(5512), 2357–2364 (2001)

    Article  Google Scholar 

  • Cardullo, F., Diederich, F., Echegoyen, L., Habicher, T., Jayaraman, N., Leblanc, R.M., Stoddart, J.F., Wang, S.: Stable langmuir and langmuir–blodgett films of fullerene–glycodendron conjugates. Langmuir 14(8), 1955–1959 (1998)

    Article  Google Scholar 

  • Cass, A.E., Davis, G., Francis, G.D., Hill, H.A.O., Aston, W.J., Higgins, I.J., Plotkin, E.V., Scott, L.D., Turner, A.P.: Ferrocene-mediated enzyme electrode for amperometric determination of glucose. Anal. Chem. 56(4), 667–671 (1984)

    Article  Google Scholar 

  • Chakrabarti, R., Klibanov, A.M.: Nanocrystals modified with peptide nucleic acids (PNAs) for selective self-assembly and DNA detection. J. Am. Chem. Soc. 125(41), 12531–12540 (2003)

    Article  Google Scholar 

  • Chambers, J.P., Arulanandam, B.P., Matta, L.L., Weis, A., Valdes, J.J.: Biosensor recognition elements. Texas University at San Antonio Department of Biology (2008)

    Google Scholar 

  • Clark, L.C., Lyons, C.: Electrode systems for continuous monitoring in cardiovascular surgery. Ann. N. Y. Acad. Sci. 102(1), 29–45 (1962)

    Article  Google Scholar 

  • Damborský, P., Švitel, J., Katrlík, J.: Optical biosensors. Essays Biochem. 60(1), 91–100 (2016)

    Article  Google Scholar 

  • Davis, F., Higson, S.P.: Structured thin films as functional components within biosensors. Biosens. Bioelectron. 21(1), 1–20 (2005)

    Article  Google Scholar 

  • Demidov, V.V., Potaman, V.N., Frank-Kamenetskil, M., Egholm, M., Buchard, O., Sönnichsen, S.H., Nlelsen, P.E.: Stability of peptide nucleic acids in human serum and cellular extracts. Biochem. Pharmacol. 48(6), 1310–1313 (1994)

    Article  Google Scholar 

  • Drafts, B.: Acoustic wave technology sensors. IEEE Trans. Microw. Theory Tech. 49(4), 795–802 (2001)

    Article  Google Scholar 

  • Durmuş, N.G., Lin, R.L., Kozberg, M., Dermici, D., Khademhosseini, A., Demirci, U.: Acoustic-based biosensors. In: Encyclopedia of Microfluidics and Nanofluidics, pp. 28–40. Springer

    Google Scholar 

  • Eggins, B.R.: Chemical Sensors and Biosensors. Wiley (2008)

    Google Scholar 

  • Egholm, M., Buchardt, O., Christensen, L., Behrens, C., Freier, S.M., Driver, D.A., Berg, R.H., Kim, S.K., Norden, B., Nielsen, P.E.: PNA hybridizes to complementary oligonucleotides obeying the Watson-Crick hydrogen-bonding rules. Nature 365(6446), 566 (1993)

    Article  Google Scholar 

  • Ellington, A.D., Szostak, J.W.: In vitro selection of RNA molecules that bind specific ligands. Nature 346(6287), 818 (1990)

    Article  Google Scholar 

  • Ersöz, A., Denizli, A., Özcan, A., Say, R.: Molecularly imprinted ligand-exchange recognition assay of glucose by quartz crystal microbalance. Biosens. Bioelectron. 20(11), 2197–2202 (2005)

    Article  Google Scholar 

  • Estevez, M.C., Otte, M.A., Sepulveda, B., Lechuga, L.M.: Trends and challenges of refractometric nanoplasmonic biosensors: a review. Anal. Chim. Acta 806, 55–73 (2014)

    Article  Google Scholar 

  • Fant, C., Sott, K., Elwing, H., Hook, F.: Adsorption behavior and enzymatically or chemically induced cross-linking of a mussel adhesive protein. Biofouling 16(2–4), 119–132 (2000)

    Article  Google Scholar 

  • Fogel, R., Limson, J., Seshia, A.A.: Acoustic biosensors. Essays Biochem. 60(1), 101–110 (2016)

    Article  Google Scholar 

  • Freire, R.S., Pessoa, C.A., Mello, L.D., Kubota, L.T.: Direct electron transfer: an approach for electrochemical biosensors with higher selectivity and sensitivity. J. Braz. Chem. Soc. 14(2), 230–243 (2003)

    Article  Google Scholar 

  • Gemeiner, P., Dočolomanský, P., Vikartovská, A., Štefuca, V.: Amplification of flow-microcalorimetry signal by means of multiple bioaffinity layering of lectin and glycoenzyme. Biotechnol. Appl. Biochem. 28(2), 155–161 (1998)

    Google Scholar 

  • Guilbault, G.G., Lubrano, G.J.: An enzyme electrode for the amperometric determination of glucose. Anal. Chim. Acta 64(3), 439–455 (1973)

    Article  Google Scholar 

  • Gruhl, F.J., Rapp, B.E., Lange, K.: Biosensors for diagnostic applications. Adv. Biochem. Eng. Biotechnol. 133, 115–148 (2013)

    Google Scholar 

  • Hammond, J.L., Formisano, N., Estrela, P., Carrara, S., Tkac, J.: Electrochemical biosensors and nanobiosensors. Essays Biochem. 60(1), 69–80 (2016)

    Article  Google Scholar 

  • Harris, L.J., Larson, S.B., Hasel, K.W., McPherson, A.: Refined structure of an intact IgG2a monoclonal antibody. Biochemistry 36(7), 1581–1597 (1997)

    Article  Google Scholar 

  • Hesselberth, J.R., Robertson, M.P., Knudsen, S.M., Ellington, A.D.: Simultaneous detection of diverse analytes with an aptazyme ligase array. Anal. Biochem. 312(2), 106–112 (2003)

    Article  Google Scholar 

  • Jayasena, S.D.: Aptamers: an emerging class of molecules that rival antibodies in diagnostics. Clin. Chem. 45(9), 1628–1650 (1999)

    Google Scholar 

  • Jianrong, C., Yuqing, M., Nongyue, H., Xiaohua, W., Sijiao, L.: Nanotechnology and biosensors. Biotechnol. Adv. 22(7), 505–518 (2004)

    Article  Google Scholar 

  • Justino, C.I., Gomes, A.R., Freitas, A.C., Duarte, A.C., Rocha-Santos, T.A.: Graphene based sensors and biosensors. TrAC Trends Anal. Chem. 91, 53–66 (2017)

    Article  Google Scholar 

  • Kaspar, M., Stadler, H., Weiss, T., Ziegler, C.: Thickness shear mode resonators (“mass-sensitive devices”) in bioanalysis. Fresenius’ J. Anal. Chem. 366(6–7), 602–610 (2000)

    Article  Google Scholar 

  • Kim, B., Cha, G.S., Meyerhoff, M.E.: Homogeneous enzyme-linked binding assay for studying the interaction of lectins with carbohydrates and glycoproteins. Anal. Chem. 62(24), 2663–2668 (1990)

    Article  Google Scholar 

  • Kirsch, J., Siltanen, C., Zhou, Q., Revzin, A., Simonian, A.: Biosensor technology: recent advances in threat agent detection and medicine. Chem. Soc. Rev. 42(22), 8733–8768 (2013)

    Article  Google Scholar 

  • Koh, I., Josephson, L.: Magnetic nanoparticle sensors. Sensors 9(10), 8130–8145 (2009)

    Article  Google Scholar 

  • Länge, K., Rapp, B.E., Rapp, M.: Surface acoustic wave biosensors: a review. Anal. Bioanal. Chem. 391(5), 1509–1519 (2008)

    Article  Google Scholar 

  • Lec, R.M., Lewin, P.A.: Acoustic wave biosensors. In: Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE (1998)

    Google Scholar 

  • Lim, D.V., Simpson, J.M., Kearns, E.A., Kramer, M.F.: Current and developing technologies for monitoring agents of bioterrorism and biowarfare. Clin. Microbiol. Rev. 18(4), 583–607 (2005)

    Article  Google Scholar 

  • Lin, Z., Yip, C.M., Joseph, I.S., Ward, M.D.: Operation of an ultrasensitive 30-MHz quartz crystal microbalance in liquids. Anal. Chem. 65(11), 1546–1551 (1993)

    Article  Google Scholar 

  • Luzi, E., Minunni, M., Tombelli, S., Mascini, M.: New trends in affinity sensing: aptamers for ligand binding. TrAC Trends Anal. Chem. 22(11), 810–818 (2003)

    Article  Google Scholar 

  • Marks, R.S., Cullen, D.C., Karube, I., Lowe, C.R., Weetall, H.H.: Handbook of Biosensors and Biochips. Wiley (2007)

    Google Scholar 

  • McGill, R.A., Chung, R., Chrisey, D.B., Dorsey, P.C., Matthews, P., Piqué, A., Mlsna, T.E., Stepnowski, J.L.: Performance optimization of surface acoustic wave chemical sensors. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45(5), 1370–1380 (1998)

    Article  Google Scholar 

  • Milstein, L., Das, P.: Spread spectrum receiver using surface acoustic wave technology. IEEE Trans. Commun. 25(8), 841–847 (1977)

    Article  Google Scholar 

  • Miyajima, K., Koshida, T., Arakawa, T., Kudo, H., Saito, H., Yano, K., Mitsubayashi, K.: Fibre-optic fluoroimmunoassay system with a flow-through cell for rapid on-site determination of Escherichia coli O157: H7 by monitoring fluorescence dynamics. Biosensors 3(1), 120–131 (2013)

    Article  Google Scholar 

  • Nagase, T., Nakata, E., Shinkai, S., Hamachi, I.: Construction of artificial signal transducers on a lectin surface by post-photoaffinity-labeling modification for fluorescent saccharide biosensors. Chem. Eur. J. 9(15), 3660–3669 (2003)

    Article  Google Scholar 

  • Nikoleli, G.-P., Karapetis, S., Bratakou, S., Nikolelis, D.P., Tzamtzis, N., Psychoyios, V.N.: Graphene-based electrochemical biosensors: new trends and applications. Intell. Nanomater., 427–448 (2016)

    Google Scholar 

  • Özalp, V.C.: Acoustic quantification of ATP using a quartz crystal microbalance with dissipation. Analyst 136(23), 5046–5050 (2011)

    Article  Google Scholar 

  • Ramanathan, K., Danielsson, B.: Principles and applications of thermal biosensors. Biosens. Bioelectron. 16(6), 417–423 (2001)

    Article  Google Scholar 

  • Ramanathan, K., Rank, M., Svitel, J., Dzgoev, A., Danielsson, B.: The development and applications of thermal biosensors for bioprocess monitoring. Trends Biotechnol. 17(12), 499–505 (1999)

    Article  Google Scholar 

  • Rasooly, A., Herold, K.: Biosensors and Biodetection: Methods and Protocols Volume 1: Optical-Based Detectors (Methods in Molecular Biology). Humana Press (2008)

    Google Scholar 

  • Safina, G.: Application of surface plasmon resonance for the detection of carbohydrates, glycoconjugates, and measurement of the carbohydrate-specific interactions: a comparison with conventional analytical techniques. A critical review. Anal. Chim. Acta 712, 9–29 (2012)

    Article  Google Scholar 

  • Sano, T., Smith, C.L., Cantor, C.R.: Immuno-PCR: very sensitive antigen detection by means of specific antibody-DNA conjugates. Science 258(5079), 120–122 (1992)

    Article  Google Scholar 

  • Shimizu, Y., Morita, K.: Microhole array electrode as a glucose sensor. Anal. Chem. 62(14), 1498–1501 (1990)

    Article  Google Scholar 

  • Subrahmanyam, S., Piletsky, S.A., Turner, A.P.: Application of natural receptors in sensors and assays. Anal. Chem. 74(16), 3942–3951 (2002)

    Article  Google Scholar 

  • Tuerk, C., Gold, L.: Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249(4968), 505–510 (1990)

    Article  Google Scholar 

  • Valdes, J., Rogers, K., Eldefrawi, M.: Detection of natural toxins by an acetylcholine receptor optical sensor. In: 156th National Meeting of the American Association for the Advancement of Science (1990)

    Google Scholar 

  • Valdes, J., Wall Jr., J., Chambers, J., Eldefrawi, M.: A receptor-based capacitive biosensor. Johns Hopkins APL Tech. Digest. 9(1), 4–9 (1988)

    Google Scholar 

  • Vogt, B.D., Lin, E.K., Wu, W.-L., White, C.C.: Effect of film thickness on the validity of the Sauerbrey equation for hydrated polyelectrolyte films. J. Phys. Chem. B 108(34), 12685–12690 (2004)

    Article  Google Scholar 

  • Voinova, M., Jonson, M., Kasemo, B.: ‘Missing mass’ effect in biosensor’s QCM applications. Biosens. Bioelectron. 17(10), 835–841 (2002)

    Article  Google Scholar 

  • Waggoner, P.S., Craighead, H.G.: Micro-and nanomechanical sensors for environmental, chemical, and biological detection. Lab Chip 7(10), 1238–1255 (2007)

    Article  Google Scholar 

  • Wang, J.: Nanomaterial-based electrochemical biosensors. Analyst 130(4), 421–426 (2005)

    Article  Google Scholar 

  • Wang, R., Zhao, J., Jiang, T., Kwon, Y.M., Lu, H., Jiao, P., Liao, M., Li, Y.: Selection and characterization of DNA aptamers for use in detection of avian influenza virus H5N1. J. Virol. Methods 189(2), 362–369 (2013)

    Article  Google Scholar 

  • Wessa, T., Barié, N., Rapp, M., Ache, H.: Polyimide, a new shielding layer for sensor applications. Sensors and Actuators B: Chemical 53(1–2), 63–68 (1998)

    Article  Google Scholar 

  • Wilson, G.S., Gifford, R.: Biosensors for real-time in vivo measurements. Biosens. Bioelectron. 20(12), 2388–2403 (2005)

    Article  Google Scholar 

  • Wilson, J.S.: Sensor Technology Handbook. Elsevier (2004)

    Google Scholar 

  • Wong, N.K., Kanu, N., Thandrayen, N., Rademaker, G.J., Baldwin, C.I., Renouf, D.V., Hounsell, E.F.: Microassay analyses of protein glycosylation. In: The Protein Protocols Handbook, pp. 841–850. Springer

    Google Scholar 

  • Yanagawa, H.: Design of generic biosensors based on green fluorescent proteins with allosteric sites by directed evolution. FEBS Lett. 453(3), 305–307 (1999)

    Article  Google Scholar 

  • Yoshikawa, K., Omochi, T.: Chemical sensing by a novel electrical oscillator: detection and quantitation of polysaccharides in concanavalin a solutions. Biochem. Biophys. Res. Commun. 137(3), 978–983 (1986)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Raoufi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sarihi, P., Azadkhah Shalmani, A., Araban, V., Raoufi, M. (2019). Nanoparticles for Biosensing. In: Rahmandoust, M., Ayatollahi, M. (eds) Nanomaterials for Advanced Biological Applications. Advanced Structured Materials, vol 104. Springer, Cham. https://doi.org/10.1007/978-3-030-10834-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10834-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10833-5

  • Online ISBN: 978-3-030-10834-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics