Skip to main content

Hydroxyapatite for Biomedicine and Drug Delivery

  • Chapter
  • First Online:
Nanomaterials for Advanced Biological Applications

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 104))

Abstract

Hydroxyapatite (HA) is a member of the calcium phosphates family (TableĀ 1) and like the other ones is known as a bioceramic with specific advantages raise from chemical similarity to the mammalian inorganic structure. In comparison to other CaPs, HA has highest thermodynamic stability and solubility (after Fluorapatite) in physiological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwalla, A., Puzzitiello, R., Garcia, G.H., Forsythe, B.: Application of a beta-tricalcium phosphate graft to minimize bony defect in boneā€“patella tendonā€“bone anterior cruciate ligament reconstruction. Arthrosc. Techn. 7, e725 (2018)

    ArticleĀ  Google ScholarĀ 

  • Ahn, E.S., Gleason, N.J., Nakahira, A., Ying, J.Y.: Nanostructure processing of hydroxyapatite-based bioceramics. Nano Lett. 1(3), 149ā€“153 (2001)

    ArticleĀ  Google ScholarĀ 

  • Akram, M., Ahmed, R., Shakir, I., Ibrahim, W.A.W., Hussain, R.: Extracting hydroxyapatite and its precursors from natural resources. J. Mater. Sci. 49(4), 1461ā€“1475 (2014)

    ArticleĀ  Google ScholarĀ 

  • Almeida, A.L., Martins, J.B.L., Taft, C.A., Longo, E., Andres, J., Lie, S.K.: A PM3 theoretical study of the adsorption and dissociation of water on MgO surfaces. J. Mol. Struct. (Thoechem.) 426(1ā€“3), 199ā€“205 (1998)

    ArticleĀ  Google ScholarĀ 

  • Antony, G.J.M., Aruna, S., Raja, S.: Enhanced mechanical properties of acrylate based shape memory polymer using grafted hydroxyapatite. J. Polym. Res. 25(5), 120 (2018)

    ArticleĀ  Google ScholarĀ 

  • Awwad, N., Alshahrani, A., Saleh, K., Hamdy, M.: A novel method to improve the anticancer activity of natural-based hydroxyapatite against the liver cancer cell line HepG2 using mesoporous magnesia as a micro-carrier. Molecules 22(12), 1947 (2017)

    ArticleĀ  Google ScholarĀ 

  • Azarpazhooh, A., Limeback, H.: Clinical efficacy of casein derivatives: a systematic review of the literature. J. Am. Dent. Assoc. 139(7), 915ā€“924 (2008)

    ArticleĀ  Google ScholarĀ 

  • Bamrungsap, S., Zhao, Z., Chen, T., Wang, L., Li, C., Fu, T., Tan, W.: Nanotechnology in therapeutics: a focus on nanoparticles as a drug delivery system. Nanomedicine 7(8), 1253ā€“1271 (2012)

    ArticleĀ  Google ScholarĀ 

  • Bansal, M., Mittal, N., Yadav, S.K., Khan, G., Gupta, P., Mishra, B., Nath, G.: Periodontal thermoresponsive, mucoadhesive dual antimicrobial loaded in-situ gel for the treatment of periodontal disease: preparation, in-vitro characterization and antimicrobial study. J. Oral Biol. Craniofacial Res. 8(2), 126ā€“133 (2018)

    ArticleĀ  Google ScholarĀ 

  • Barakat, N.A.M., Khil, M.S., Omran, A.M., Sheikh, F.A., Kim, H.Y.: Extraction of pure natural hydroxyapatite from the bovine bones bio waste by three different methods. J. Mater. Process. Technol. 209(7), 3408ā€“3415 (2009)

    ArticleĀ  Google ScholarĀ 

  • Batchelar, D.L., Davidson, M.T.M., Dabrowski, W., Cunningham, I.A.: Bone-composition imaging using coherent-scatter computed tomography: assessing bone health beyond bone mineral density. Med. Phys. 33(4), 904ā€“915 (2006)

    ArticleĀ  Google ScholarĀ 

  • Besinis, A., De Peralta, T., Tredwin, C.J., Handy, R.D.: Review of nanomaterials in dentistry: interactions with the oral microenvironment, clinical applications, hazards, and benefits. ACS Nano 9(3), 2255ā€“2289 (2015)

    ArticleĀ  Google ScholarĀ 

  • Best, S., Porter, A., Thian, E., Huang, J.: Bioceramics: past, present and for the future. J. Eur. Ceram. Soc. 28(7), 1319ā€“1327 (2008)

    ArticleĀ  Google ScholarĀ 

  • Bian, S.-W., Baltrusaitis, J., Galhotra, P., Grassian, V.H.: A template-free, thermal decomposition method to synthesize mesoporous MgO with a nanocrystalline framework and its application in carbon dioxide adsorption. J. Mater. Chem. 20(39), 8705 (2010)

    ArticleĀ  Google ScholarĀ 

  • Bianco, A., Cacciotti, I., Lombardi, M., Montanaro, L.: Si-substituted hydroxyapatite nanopowders: synthesis, thermal stability and sinterability. Mater. Res. Bull. 44(2), 345ā€“354 (2009)

    ArticleĀ  Google ScholarĀ 

  • Bose, S., Banerjee, A., Dasgupta, S., Bandyopadhyay, A.: Synthesis, processing, mechanical, and biological property characterization of hydroxyapatite whisker-reinforced hydroxyapatite composites. J. Am. Ceram. Soc. 92(2), 323ā€“330 (2009)

    ArticleĀ  Google ScholarĀ 

  • Bose, S., Dasgupta, S., Tarafder, S., Bandyopadhyay, A.: Microwave-processed nanocrystalline hydroxyapatite: simultaneous enhancement of mechanical and biological properties. Acta Biomater. 6(9), 3782ā€“3790 (2010)

    ArticleĀ  Google ScholarĀ 

  • Cai, Y., Liu, Y., Yan, W., Hu, Q., Tao, J., Zhang, M., Shi, Z., Tang, R.: Role of hydroxyapatite nanoparticle size in bone cell proliferation. J. Mater. Chem. 17(36), 3780ā€“3787 (2007)

    ArticleĀ  Google ScholarĀ 

  • Cai, J., Palamara, J., Manton, D., Burrow, M.: Status and progress of treatment methods for root caries in the last decade: a literature review. Aust. Dent. J. 63(1), 34ā€“54 (2018)

    ArticleĀ  Google ScholarĀ 

  • Carrodeguas, R.G., De Aza, S.: Ī±-Tricalcium phosphate: synthesis, properties and biomedical applications. Acta Biomater. 7(10), 3536ā€“3546 (2011)

    ArticleĀ  Google ScholarĀ 

  • Chakraborty, R., Seesala, V.S., Sen, M., Sengupta, S., Dhara, S., Saha, P., Das, K., Das, S.: MWCNT reinforced bone like calcium phosphateā€”Hydroxyapatite composite coating developed through pulsed electrodeposition with varying amount of apatite phase and crystallinity to promote superior osteoconduction, cytocompatibility and corrosion protection performance compared to bare metallic implant surface. Surf. Coat. Technol. 325, 496ā€“514 (2017)

    ArticleĀ  Google ScholarĀ 

  • Chan, W.C.W., Khademhosseini, A., Parak, W., Weiss, P.S.: Cancer: nanoscience and nanotechnology approaches. ACS Nano 11(5), 4375ā€“4376 (2017)

    ArticleĀ  Google ScholarĀ 

  • Chen, Q., Cao, L., Wang, J., Jiang, L., Zhao, H., Yishake, M., Ma, Y., Zhou, H., Lin, H., Dong, J., Fan, Z.: Bioinspired modification of poly(L-lactic acid)/nano-sized beta-tricalcium phosphate composites with gelatin/hydroxyapatite coating for enhanced osteointegration and osteogenesis (2018). 1550-7033 (Print)

    Google ScholarĀ 

  • Chen, D.Z., Tang, C.Y., Chan, K.C., Tsui, C.P., Yu, P.H.F., Leung, M.C.P., Uskokovic, P.S.: Dynamic mechanical properties and in vitro bioactivity of PHBHV/HA nanocomposite. Compos. Sci. Technol. 67(7), 1617ā€“1626 (2007)

    ArticleĀ  Google ScholarĀ 

  • Chen, Y., Huang, Z., Li, X., Li, S., Zhou, Z., Zhang, Y., Feng, Q.L., Yu, B.: In vitro biocompatibility and osteoblast differentiation of an injectable Chitosan/Nano-Hydroxyapatite/Collagen scaffold. J. Nanomater. 2012, 6 (2012)

    Google ScholarĀ 

  • Cui, H., Wu, X., Chen, Y., Boughton, R.I.: Synthesis and characterization of mesoporous MgO by template-free hydrothermal method. Mater. Res. Bull. 50, 307ā€“311 (2014)

    ArticleĀ  Google ScholarĀ 

  • De Groot, K., Geesink, R., Klein, C., Serekian, P.: Plasma sprayed coatings of hydroxylapatite. J. Biomed. Mater. Res., Part A 21(12), 1375ā€“1381 (1987)

    ArticleĀ  Google ScholarĀ 

  • Dhand, V., Rhee, K.Y., Park, S.-J.: The facile and low temperature synthesis of nanophase hydroxyapatite crystals using wet chemistry. Mater. Sci. Eng. C 36, 152ā€“159 (2014)

    ArticleĀ  Google ScholarĀ 

  • Dong, Z., Li, Y., Zou, Q.: Degradation and biocompatibility of porous nano-hydroxyapatite/polyurethane composite scaffold for bone tissue engineering. Appl. Surf. Sci. 255(12), 6087ā€“6091 (2009)

    ArticleĀ  Google ScholarĀ 

  • Dorozhkin, S.V.: Nanosized and nanocrystalline calcium orthophosphates. Acta Biomater. 6(3), 715ā€“734 (2010)

    ArticleĀ  Google ScholarĀ 

  • Dorozhkin, S.V.: Calcium orthophosphate bioceramics. Ceram. Int. 41(10), 13913ā€“13966 (2015)

    ArticleĀ  Google ScholarĀ 

  • Dorozhkin, S.V.: Self-setting Calcium Orthophosphate (CaPO4) Formulations. Developments and Applications of Calcium Phosphate Bone Cements, pp. 41ā€“146. Springer, Singapore (2018)

    BookĀ  Google ScholarĀ 

  • Durgesh, B.H., Basavarajappa, S., Ramakrishnaiah, R., Al Kheraif, A.A., Divakar, D.D.: A review on microbiological cause of periodontal disease: disease and treatment. Rev. Med. Microbiol. 26(2), 53ā€“58 (2015)

    ArticleĀ  Google ScholarĀ 

  • Elkassas, D., Arafa, A.: Remineralizing efficacy of different calcium-phosphate and fluoride based delivery vehicles on artificial caries like enamel lesions. J. Dent. 42(4), 466ā€“474 (2014)

    ArticleĀ  Google ScholarĀ 

  • Elsabahy, M., Wooley, K.L.: Design of polymeric nanoparticles for biomedical delivery applications. Chem. Soc. Rev. 41(7), 2545 (2012)

    ArticleĀ  Google ScholarĀ 

  • Eriksson, M., Liu, Y., Hu, J., Gao, L., Nygren, M., Shen, Z.: Transparent hydroxyapatite ceramics with nanograin structure prepared by high pressure spark plasma sintering at the minimized sintering temperature. J. Eur. Ceram. Soc. 31(9), 1533ā€“1540 (2011)

    ArticleĀ  Google ScholarĀ 

  • Etienne, D.: Locally delivered antimicrobials for the treatment of chronic periodontitis. Oral Dis. 9(s1), 45ā€“50 (2003)

    ArticleĀ  Google ScholarĀ 

  • Faeda, R.S., Tavares, H.S., Sartori, R., Sartori, A.C., Marcantonio Jr., E.: Biological performance of chemical hydroxyapatite coating associated with implant surface modification by laser beam: biomechanical study in rabbit tibias (2009). 1531-5053 (Electronic)

    Google ScholarĀ 

  • Fahami, A., Nasiri-Tabrizi, B., Ebrahimi-Kahrizsangi, R.: Mechanosynthesis and characterization of chlorapatite nanopowders. Mater. Lett. 110, 117ā€“121 (2013)

    ArticleĀ  Google ScholarĀ 

  • Ferraz, M., Mateus, A., Sousa, J., Monteiro, F.: Nanohydroxyapatite microspheres as delivery system for antibiotics: release kinetics, antimicrobial activity, and interaction with osteoblasts. J. Biomed. Mater. Res., Part A 81(4), 994ā€“1004 (2007)

    ArticleĀ  Google ScholarĀ 

  • Fu, L.-H., Chao, Q., Liu, Y.-J., Cao, W.-T., Ma, M.-G.: Sonochemical synthesis of cellulose/hydroxyapatite nanocomposites and their application in protein adsorption. Sci. Rep. 8(1) (2018)

    Google ScholarĀ 

  • Furko, M., Havasi, V., KĆ³nya, Z., GrĆ¼newald, A., Detsch, R., Boccaccini, A.R., BalĆ”zsi, C.: Development and characterization of multi-element doped hydroxyapatite bioceramic coatings on metallic implants for orthopedic applications. BoletĆ­n de la Sociedad EspaƱola de CerĆ”mica y Vidrio 57(2), 55ā€“65 (2018)

    ArticleĀ  Google ScholarĀ 

  • Furlong, R., Osborn, J.: Fixation of hip prostheses by hydroxyapatite ceramic coatings. Bone Joint J. 73(5), 741ā€“745 (1991)

    Google ScholarĀ 

  • Furukawa, T., Matsusue, Y., Yasunaga, T., Nakagawa, Y., Okada, Y., Shikinami, Y., Okuno, M., Nakamura, T.: Histomorphometric study on high-strength hydroxyapatite/poly(L-lactide) composite rods for internal fixation of bone fractures. J. Biomed. Mater. Res. 50(3), 410ā€“419 (2000)

    ArticleĀ  Google ScholarĀ 

  • Gauthier, O., Bouler, J.M., Weiss, P., Bosco, J., Aguado, E., Daculsi, G.: Short-term effects of mineral particle sizes on cellular degradation activity after implantation of injectable calcium phosphate biomaterials and the consequences for bone substitution. Bone 25(2), 71Sā€“74S (1999)

    ArticleĀ  Google ScholarĀ 

  • Gholizadeh, B.S., Buazar, F., Hosseini, S.M., Mousavi, S.M.: Enhanced antibacterial activity, mechanical and physical properties of alginate/hydroxyapatite bionanocomposite film (2018). 1879-0003 (Electronic)

    Google ScholarĀ 

  • Giacomini, D., Torricelli, P., Gentilomi, G.A., Boanini, E., Gazzano, M., Bonvicini, F., Benetti, E., Soldati, R., Martelli, G., Rubini, K., Bigi, A.: Monocyclic Ī²-lactams loaded on hydroxyapatite: new biomaterials with enhanced antibacterial activity against resistant strains. Sci. Rep. 7(1), 2712 (2017)

    ArticleĀ  Google ScholarĀ 

  • Gratton, S.E.A., Ropp, P.A., Pohlhaus, P.D., Luft, J.C., Madden, V.J., Napier, M.E., DeSimone, J.M.: The effect of particle design on cellular internalization pathways. Proc. Natl. Acad. Sci. 105(33), 11613ā€“11618 (2008)

    ArticleĀ  Google ScholarĀ 

  • Gu, Y.W., Khor, K.A., Cheang, P.: Bone-like apatite layer formation on hydroxyapatite prepared by spark plasma sintering (SPS). Biomaterials 25(18), 4127ā€“4134 (2004)

    ArticleĀ  Google ScholarĀ 

  • Guo, Y.-P., Yao, Y.-B., Ning, C.-Q., Guo, Y.-J., Chu, L.-F.: Fabrication of mesoporous carbonated hydroxyapatite microspheres by hydrothermal method. Mater. Lett. 65(14), 2205ā€“2208 (2011)

    ArticleĀ  Google ScholarĀ 

  • Ha, S.-W., Jang, H.L., Nam, K.T., Beck, G.R.: Nano-hydroxyapatite modulates osteoblast lineage commitment by stimulation of DNA methylation and regulation of gene expression. Biomaterials 65, 32ā€“42 (2015)

    ArticleĀ  Google ScholarĀ 

  • Habibovic, P., Kruyt, M.C., Juhl, M.V., Clyens, S., Martinetti, R., Dolcini, L., Theilgaard, N., van Blitterswijk, C.A.: Comparative in vivo study of six hydroxyapatite-based bone graft substitutes. J. Orthop. Res. 26(10), 1363ā€“1370 (2008)

    ArticleĀ  Google ScholarĀ 

  • Hamdy, M.S., Awwad, N.S., Alshahrani, A.M.: Mesoporous magnesia: synthesis, characterization, adsorption behavior and cytotoxic activity. Mater. Des. 110, 503ā€“509 (2016)

    ArticleĀ  Google ScholarĀ 

  • Hanes, P.J., Purvis, J.P.: Local anti-infective therapy: pharmacological agents. A systematic review. Ann. Periodontol. 8(1), 79ā€“98 (2003)

    ArticleĀ  Google ScholarĀ 

  • Hannig, C., Basche, S., Burghardt, T., Al-Ahmad, A., Hannig, M.: Influence of a mouthwash containing hydroxyapatite microclusters on bacterial adherence in situ. Clin. Oral Invest. 17(3), 805ā€“814 (2013)

    ArticleĀ  Google ScholarĀ 

  • Harja, M., Ciobanu, G.: Studies on adsorption of oxytetracycline from aqueous solutions onto hydroxyapatite (2018). 1879-1026 (Electronic)

    Google ScholarĀ 

  • Hashimoto, Y., Taki, T., Sato, T.: Sorption of dissolved lead from shooting range soils using hydroxyapatite amendments synthesized from industrial byproducts as affected by varying pH conditions. J. Environ. Manage. 90(5), 1782ā€“1789 (2009)

    ArticleĀ  Google ScholarĀ 

  • Hassan, M.I., Sultana, N.: Characterization, drug loading and antibacterial activity of nanohydroxyapatite/polycaprolactone (nHA/PCL) electrospun membrane. 3 Biotech 7(4), 249 (2017)

    Google ScholarĀ 

  • Hiller, K.-A., Buchalla, W., Grillmeier, I., Neubauer, C., Schmalz, G.: In vitro effects of hydroxyapatite containing toothpastes on dentin permeability after multiple applications and ageing. Sci. Rep. 8(1), 4888 (2018)

    ArticleĀ  Google ScholarĀ 

  • Hou, C.-H., Hou, S.-M., Hsueh, Y.-S., Lin, J., Wu, H.-C., Lin, F.-H.: The in vivo performance of biomagnetic hydroxyapatite nanoparticles in cancer hyperthermia therapy. Biomaterials 30(23), 3956ā€“3960 (2009)

    ArticleĀ  Google ScholarĀ 

  • Hu, J., Russell, J., Ben-Nissan, B., Vago, R.: Production and analysis of hydroxyapatite from Australian corals via hydrothermal process. J. Mater. Sci. Lett. 20(1), 85ā€“87 (2001)

    ArticleĀ  Google ScholarĀ 

  • Hu, Y., Gu, X., Yang, Y., Huang, J., Hu, M., Chen, W., Tong, Z., Wang, C.: Facile fabrication of poly(L-lactic acid)-grafted hydroxyapatite/poly(lactic-co-glycolic acid) scaffolds by pickering high internal phase emulsion templates. ACS Appl. Mater. Interfaces 6(19), 17166ā€“17175 (2014)

    ArticleĀ  Google ScholarĀ 

  • Huang, S., Gao, S., Cheng, L., Yu, H.: Remineralization potential of nano-hydroxyapatite on initial enamel lesions: an in vitro study. Caries Res. 45(5), 460ā€“468 (2011)

    ArticleĀ  Google ScholarĀ 

  • Huang, Z.-B., Shi, X., Mao, J., Gong, S.-Q.: Design of a hydroxyapatite-binding antimicrobial peptide with improved retention and antibacterial efficacy for oral pathogen control. Sci. Rep. 6, 38410 (2016)

    ArticleĀ  Google ScholarĀ 

  • Itokazu, M., Sugiyama, T., Ohno, T., Wada, E., Katagiri, Y.: Development of porous apatite ceramic for local delivery of chemotherapeutic agents. J. Biomed. Mater. Res.: Off. J. Soc. Biomater., Jpn. Soc. Biomater., Aust. Soc. Biomater. 39(4), 536ā€“538 (1998a)

    ArticleĀ  Google ScholarĀ 

  • Itokazu, M., Yang, W., Aoki, T., Ohara, A., Kato, N.: Synthesis of antibiotic-loaded interporous hydroxyapatite blocks by vacuum method and in vitro drug release testing. Biomaterials 19(7), 817ā€“819 (1998b)

    ArticleĀ  Google ScholarĀ 

  • Jarlbring, M., Sandstrƶm, D.E., Antzutkin, O.N., Forsling, W.: Characterization of active phosphorus surface sites at synthetic carbonate-free fluorapatite using single-pulse 1H, 31P, and 31P CP MAS NMR. Langmuir 22(10), 4787ā€“4792 (2006)

    ArticleĀ  Google ScholarĀ 

  • Jayasree, R., Kumar, T.S., Mahalaxmi, S., Abburi, S., Rubaiya, Y., Doble, M.: Dentin remineralizing ability and enhanced antibacterial activity of strontium and hydroxyl ion co-releasing radiopaque hydroxyapatite cement. J. Mater. Sci. Mater. Med. 28(6), 95 (2017)

    ArticleĀ  Google ScholarĀ 

  • Jee, S.S., Kasinath, R.K., DiMasi, E., Kim, Y.-Y., Gower, L.: Oriented hydroxyapatite in turkey tendon mineralized via the polymer-induced liquid-precursor (PILP) process. CrystEngComm 13(6), 2077ā€“2083 (2011)

    ArticleĀ  Google ScholarĀ 

  • Jungbauer, A., Hahn, R., Deinhofer, K., Luo, P.: Performance and characterization of a nanophased porous hydroxyapatite for protein chromatography. Biotechnol. Bioeng. 87(3), 364ā€“375 (2004)

    ArticleĀ  Google ScholarĀ 

  • Juntavee, N., Juntavee, A., Plongniras, P.: Remineralization potential of nano-hydroxyapatite on enamel and cementum surrounding margin of computer-aided design and computer-aided manufacturing ceramic restoration (2018). 1178-2013 (Electronic)

    ArticleĀ  Google ScholarĀ 

  • Kang, M.-H., Jung, H.-D., Kim, S.-W., Lee, S.-M., Kim, H.-E., Estrin, Y., Koh, Y.-H.: Production and bio-corrosion resistance of porous magnesium with hydroxyapatite coating for biomedical applications. Mater. Lett. 108, 122ā€“124 (2013)

    ArticleĀ  Google ScholarĀ 

  • Karthik, A., Vinita, V., Gobi Saravanan, K., Viswanathan, K., Chavali, M.: Implant application of bioactive nano-hydroxyapatite powdersā€”a comparative study. Mater. Res. Express 5(1), 015405 (2018)

    ArticleĀ  Google ScholarĀ 

  • Ke, D., Robertson, S.F., Dernell, W.S., Bandyopadhyay, A., Bose, S.: Effects of MgO and SiO2 on plasma-sprayed hydroxyapatite coating: an in vivo study in rat distal femoral defects. ACS Appl. Mater. Interfaces 9(31), 25731ā€“25737 (2017)

    ArticleĀ  Google ScholarĀ 

  • Kensche, A., Pƶtschke, S., Hannig, C., Richter, G., Hoth-Hannig, W., Hannig, M.: Influence of calcium phosphate and apatite containing products on enamel erosion. Sci. World J. 2016, 12 (2016)

    Google ScholarĀ 

  • Kensche, A., Holder, C., Basche, S., Tahan, N., Hannig, C., Hannig, M.: Efficacy of a mouthrinse based on hydroxyapatite to reduce initial bacterial colonisation in situ. Arch. Oral Biol. 80, 18ā€“26 (2017)

    ArticleĀ  Google ScholarĀ 

  • Khajuria, D.K., Kumar, V.B., Gedanken, A., Karasik, D.: Accelerated bone regeneration by nitrogen-doped carbon dots functionalized with hydroxyapatite nanoparticles. LID (2018). https://doi.org/10.1021/acsami.8b02792. 1944-8252 (Electronic)

    ArticleĀ  Google ScholarĀ 

  • Khanarian, N.T., Haney, N.M., Burga, R.A., Lu, H.H.: A functional agarose-hydroxyapatite scaffold for osteochondral interface regeneration. Biomaterials 33(21), 5247ā€“5258 (2012)

    ArticleĀ  Google ScholarĀ 

  • Khanna, K., Jaiswal, A., Dhumal, R.V., Selkar, N., Chaudhari, P., Soni, V.P., Vanage, G.R., Bellare, J.: Comparative bone regeneration study of hardystonite and hydroxyapatite as filler in critical-sized defect of rat calvaria. RSC Adv. 7(60), 37522ā€“37533 (2017)

    ArticleĀ  Google ScholarĀ 

  • Kim, T.N., Feng, Q.L., Kim, J.O., Wu, J., Wang, H., Chen, G.C., Cui, F.Z.: Antimicrobial effects of metal ions (Ag+,ā€‰ Cu2+, Zn2+) in hydroxyapatite. J. Mater. Sci. Mater. Med. 9(3), 129ā€“134 (1998)

    ArticleĀ  Google ScholarĀ 

  • Kim, H.-W., Kim, H.-E., Knowles, J.C.: Fluor-hydroxyapatite sol-gel coating on titanium substrate for hard tissue implants. Biomaterials 25(17), 3351ā€“3358 (2004a)

    ArticleĀ  Google ScholarĀ 

  • Kim, H.W., Koh, Y.H., Li, L.H., Lee, S., Kim, H.E.: Hydroxyapatite coating on titanium substrate with titania buffer layer processed by sol-gel method. Biomaterials 25(13), 2533ā€“2538 (2004b)

    ArticleĀ  Google ScholarĀ 

  • Kim, J.S., Kuk, E., Yu, K.N., Kim, J.-H., Park, S.J., Lee, H.J., Kim, S.H., Park, Y.K., Park, Y.H., Hwang, C.-Y.: Antimicrobial effects of silver nanoparticles. Nanomedicine: Nanotechnol., Biol. Med. 3(1), 95ā€“101 (2007)

    Google ScholarĀ 

  • Klesing, J., Chernousova, S., Epple, M.: Freeze-dried cationic calcium phosphatenanorods as versatile carriers of nucleic acids (DNA, siRNA). J. Mater. Chem. 22(1), 199ā€“204 (2012)

    ArticleĀ  Google ScholarĀ 

  • Kokubo, T., Takadama, H.: How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27(15), 2907ā€“2915 (2006)

    ArticleĀ  Google ScholarĀ 

  • Kolanthai, E., Ganesan, K., Epple, M., Kalkura, S.N.: Synthesis of nanosized hydroxyapatite/agarose powders for bone filler and drug delivery application. Mater. Today Commun. 8, 31ā€“40 (2016)

    ArticleĀ  Google ScholarĀ 

  • Kong, L., Gao, Y., Cao, W., Gong, Y., Zhao, N., Zhang, X.: Preparation and characterization of nano-hydroxyapatite/chitosan composite scaffolds. J. Biomed. Mater. Res., Part A 75A(2), 275ā€“282 (2005)

    ArticleĀ  Google ScholarĀ 

  • Kong, L., Mu, Z., Yu, Y., Zhang, L., Hu, J.: Polyethyleneimine-stabilized hydroxyapatite nanoparticles modified with hyaluronic acid for targeted drug delivery. RSC Adv. 6(104), 101790ā€“101799 (2016)

    ArticleĀ  Google ScholarĀ 

  • Krishnan, A.G., Jayaram, L., Biswas, R., Nair, M.: Evaluation of antibacterial activity and cytocompatibility of ciprofloxacin loaded Gelatinā€“Hydroxyapatite scaffolds as a local drug delivery system for osteomyelitis treatment. Tissue Eng., Part A 21(7ā€“8), 1422ā€“1431 (2015)

    ArticleĀ  Google ScholarĀ 

  • Kundu, B., Ghosh, D., Sinha, M.K., Sen, P.S., Balla, V.K., Das, N., Basu, D.: Doxorubicin-intercalated nano-hydroxyapatite drug-delivery system for liver cancer: an animal model. Ceram. Int. 39(8), 9557ā€“9566 (2013)

    ArticleĀ  Google ScholarĀ 

  • Kurtjak, M., Vukomanović, M., Kramer, L., Suvorov, D.: Biocompatible nano-gallium/hydroxyapatite nanocomposite with antimicrobial activity. J. Mater. Sci. Mater. Med. 27(11), 170 (2016)

    ArticleĀ  Google ScholarĀ 

  • Kwak, D.H., Lee, E.J., Kim, D.J.: Bioactivity of cellulose acetate/hydroxyapatite nanoparticle composite fiber by an electro-spinning process. J. Nanosci. Nanotechnol. 14(11), 8464ā€“8471 (2014)

    ArticleĀ  Google ScholarĀ 

  • Larsen, M.J., Fejerkov, O.: Chemical and structural challenges in remineralization of dental enamel lesions. Eur. J. Oral Sci. 97(4), 285ā€“296 (1989)

    ArticleĀ  Google ScholarĀ 

  • Li, M., Xiong, P., Yan, F., Li, S., Ren, C., Yin, Z, Li, A., Li, H., Ji, X., Zheng, Y., Cheng, Y.: An overview of graphene-based hydroxyapatite composites for orthopedic applications (2018). 2452-199X (Electronic)

    Google ScholarĀ 

  • Li, S.H., De Wijn, J.R., Layrolle, P., de Groot, K.: Synthesis of macroporous hydroxyapatite scaffolds for bone tissue engineering. J. Biomed. Mater. Res. 61(1), 109ā€“120 (2002)

    ArticleĀ  Google ScholarĀ 

  • Li, B., Guo, B., Fan, H., Zhang, X.: Preparation of nano-hydroxyapatite particles with different morphology and their response to highly malignant melanoma cells in vitro. Appl. Surf. Sci. 255(2), 357ā€“360 (2008a)

    ArticleĀ  Google ScholarĀ 

  • Li, J., Yin, Y., Yao, F., Zhang, L., Yao, K.: Effect of nano- and micro-hydroxyapatite/chitosan-gelatin network film on human gastric cancer cells. Mater. Lett. 62(17), 3220ā€“3223 (2008b)

    ArticleĀ  Google ScholarĀ 

  • Li, L., Liu, Y., Tao, J., Zhang, M., Pan, H., Xu, X., Tang, R.: Surface modification of hydroxyapatite nanocrystallite by a small amount of terbium provides a biocompatible fluorescent probe. J. Phys. Chem. C 112(32), 12219ā€“12224 (2008c)

    ArticleĀ  Google ScholarĀ 

  • Liang, C., Joseph, M.M., James, C.M.L., Hao, L.: The role of surface charge on the uptake and biocompatibility of hydroxyapatite nanoparticles with osteoblast cells. Nanotechnology 22(10), 105708 (2011)

    ArticleĀ  Google ScholarĀ 

  • Lin, K., Pan, J., Chen, Y., Cheng, R., Xu, X.: Study the adsorption of phenol from aqueous solution on hydroxyapatite nanopowders. J. Hazard. Mater. 161(1), 231ā€“240 (2009)

    ArticleĀ  Google ScholarĀ 

  • Liu, D.-M.: Fabrication and characterization of porous hydroxyapatite granules. Biomaterials 17(20), 1955ā€“1957 (1996)

    ArticleĀ  Google ScholarĀ 

  • Lukasheva, N.V., Tolmachev, D.A.: Cellulose nanofibrils and mechanism of their mineralization in biomimetic synthesis of hydroxyapatite/native bacterial cellulose nanocomposites: molecular dynamics simulations. Langmuir 32(1), 125ā€“134 (2015)

    ArticleĀ  Google ScholarĀ 

  • Lv, Q., Nair, L., Laurencin, C.T.: Fabrication, characterization, and in vitro evaluation of poly(lactic acid glycolic acid)/nano-hydroxyapatite composite microsphere-based scaffolds for bone tissue engineering in rotating bioreactors. J. Biomed. Mater. Res. A 91(3), 679ā€“691 (2009)

    ArticleĀ  Google ScholarĀ 

  • Ma, Q.Y., Traina, S.J., Logan, T.J., Ryan, J.A.: Effects of Aqueous Al, Cd, Cu, Fe(II), Ni, and Zn on Pb immobilization by hydroxyapatite. Environ. Sci. Technol. 28(7), 1219ā€“1228 (1994)

    ArticleĀ  Google ScholarĀ 

  • Madhumathi, K., Rubaiya, Y., Doble, M., Venkateswari, R., Sampath Kumar, T.S.: Antibacterial, anti-inflammatory, and bone-regenerative dual-drug-loaded calcium phosphate nanocarriers-in vitro and in vivo studies. LID (2018). https://doi.org/10.1007/s13346-018-0532-6. 2190-3948 (Electronic)

    ArticleĀ  Google ScholarĀ 

  • Mahdi, S., Ramin, R., Fabio, S., Maliheh, G., Michael, S.: Synthesis of stabilized hydroxyapatite nanosuspensions for enamel caries remineralization. Aust. Dent. J. 63, 356ā€“364 (2018). https://doi.org/10.1111/adj.12624

    ArticleĀ  Google ScholarĀ 

  • Mahabole, M.P., Aiyer, R.C., Ramakrishna, C.V., Sreedhar, B., Khairnar, R.S.: Synthesis, characterization and gas sensing property of hydroxyapatite ceramic. Bull. Mater. Sci. 28(6), 535ā€“545 (2005)

    ArticleĀ  Google ScholarĀ 

  • Maia, A.L., Cavalcante, C.H., Souza, M.G., Ferreira Cde, A., Rubello, D., Chondrogiannis, S., Cardoso, V.N., Ramaldes, G.A., Barros, A.L., Soares, D.C.: Hydroxyapatite nanoparticles. Nucl. Med. Commun. 37(7), 775ā€“782 (2016)

    ArticleĀ  Google ScholarĀ 

  • Maia, A. L. C.: Vincristine-loaded hydroxyapatite nanoparticles as a potential delivery system for bone cancer therapy. (2018). https://doi.org/10.1080/1061186X.2017.1401078

    ArticleĀ  Google ScholarĀ 

  • Malmberg, P., Nygren, H.: Methods for the analysis of the composition of bone tissue, with a focus on imaging mass spectrometry (TOF-SIMS). Proteomics 8(18), 3755ā€“3762 (2008)

    ArticleĀ  Google ScholarĀ 

  • Marini, E., Ballanti, P., Silvestrini, G., Valdinucci, F., Bonucci, E.: The presence of different growth factors does not influence bone response to hydroxyapatite: preliminary results. J. Orthop. Andtraumatology 5(1), 34ā€“43 (2004)

    ArticleĀ  Google ScholarĀ 

  • Meagher, M.J., Weiss-Bilka, H.E., Best, M.E., Boerckel, J.D., Wagner, D.R., Roeder, R.K.: Acellular hydroxyapatite-collagen scaffolds support angiogenesis and osteogenic gene expression in an ectopic murine model: effects of hydroxyapatite volume fraction. J. Biomed. Mater. Res., Part A 104(9), 2178ā€“2188 (2016)

    ArticleĀ  Google ScholarĀ 

  • Mombelli, A.: Periodontitis as an infectious disease: specific features and their implications. Oral Dis. 9(s1), 6ā€“10 (2003)

    ArticleĀ  Google ScholarĀ 

  • Munir, M.U., Ihsan, A., Sarwar, Y., Bajwa, S.Z., Bano, K., Tehseen, B., Zeb, N., Hussain, I., Ansari, M.T., Saeed, M., Li, J., Iqbal, M.Z., Wu, A., Khan, W.S.: Hollow mesoporous hydroxyapatite nanostructures; smart nanocarriers with high drug loading and controlled releasing features. Int. J. Pharm. 544(1), 112ā€“120 (2018)

    ArticleĀ  Google ScholarĀ 

  • Nancy, D., Rajendran, N.: Vancomycin incorporated chitosan/gelatin coatings coupled with TiO2ā€“SrHAP surface modified cp-titanium for osteomyelitis treatment. Int. J. Biol. Macromol. 110, 197ā€“205 (2018)

    ArticleĀ  Google ScholarĀ 

  • Nasiri-Tabrizi, B., Fahami, A.: Synthesis and characterization of chlorapatiteā€“ZnO composite nanopowders. Ceram. Int. 40(2), 2697ā€“2706 (2014)

    ArticleĀ  Google ScholarĀ 

  • Nasri, K., El Feki, H., Sharrock, P., Fiallo, M., Nzihou, A.: Spray-dried monocalcium phosphate monohydrate for soluble phosphate fertilizer. Ind. Eng. Chem. Res. 54(33), 8043ā€“8047 (2015)

    ArticleĀ  Google ScholarĀ 

  • Netz, D.J.A., Sepulveda, P., Pandolfelli, V.C., Spadaro, A.C.C., Alencastre, J.B., Bentley, M.V.L.B., Marchetti, J.M.: Potential use of gelcasting hydroxyapatite porous ceramic as an implantable drug delivery system. Int. J. Pharm. 213(1ā€“2), 117ā€“125 (2001)

    ArticleĀ  Google ScholarĀ 

  • Nozari, A., Ajami, S., Rafiei, A., Niazi, E.: Impact of nano hydroxyapatite, nano silver fluoride and sodium fluoride varnish on primary teeth enamel remineralization: an in vitro study (2017). 2249-782X (Print)

    Google ScholarĀ 

  • Oā€™Hare, P., Meenan, B.J., Burke, G.A., Byrne, G., Dowling, D., Hunt, J.A.: Biological responses to hydroxyapatite surfaces deposited via a co-incident microblasting technique. Biomaterials 31(3), 515ā€“522 (2010)

    ArticleĀ  Google ScholarĀ 

  • Olsson, C., Emilson, C., Birkhed, D.: An in vitro study of fluoride release from a resin-modified glass ionomer cement after exposure to toothpaste slurries of different pH. Clin. Oral Invest. 4(4), 233ā€“237 (2000)

    ArticleĀ  Google ScholarĀ 

  • Ong, J.L., Chan, D.C.: Hydroxyapatite and their use as coatings in dental implants: a review (2000). 0278-940X (Print)

    Google ScholarĀ 

  • Oonishi, H., Hench, L., Wilson, J., Sugihara, F., Tsuji, E., Kushitani, S., Iwaki, H.: Comparative bone growth behavior in granules of bioceramic materials of various sizes. J. Biomed. Mater. Res.: Off. J. Soc. Biomater., Jpn. Soc. Biomater., Aust. Soc. Biomater. 44(1), 31ā€“43 (1999)

    ArticleĀ  Google ScholarĀ 

  • Otsuka, M., Matsuda, Y., Suwa, Y., Fox, J.L., Higuchi, W.I.: A novel skeletal drug-delivery system using self-setting calcium phosphate cement. 4. Effects of the mixing solution volume on the drug-release rate of heterogeneous aspirin-loaded cement. J. Pharm. Sci. 83(2), 259ā€“263 (1994)

    ArticleĀ  Google ScholarĀ 

  • Palazzo, B., Iafisco, M., Laforgia, M., Margiotta, N., Natile, G., Bianchi, C.L., Walsh, D., Mann, S., Roveri, N.: Biomimetic hydroxyapatite-drug nanocrystals as potential bone substitutes with antitumour drug delivery properties. Adv. Func. Mater. 17(13), 2180ā€“2188 (2007)

    ArticleĀ  Google ScholarĀ 

  • Pandey, A., Midha, S., Sharma, R.K., Maurya, R., Nigam, V.K., Ghosh, S., Balani, K.: Antioxidant and antibacteria hydroxyapatite-based biocomposite for orthopedic applications (2018). 1873-0191 (Electronic)

    Google ScholarĀ 

  • Park, H.-K., Lee, S.J., Oh, J.-S., Lee, S.-G., Jeong, Y.-I.L., Lee, H.C.: Smart nanoparticles based on hyaluronic acid for redox-responsive and CD44 receptor-mediated targeting of tumour. Nanoscale Res. Lett. 10(1), 981 (2015)

    Google ScholarĀ 

  • Pelin, I.M., Maier, S.S., Chitanu, G.C., Bulacovschi, V.: Preparation and characterization of a hydroxyapatiteā€“collagen composite as component for injectable bone substitute. Mater. Sci. Eng., C 29(7), 2188ā€“2194 (2009)

    ArticleĀ  Google ScholarĀ 

  • Piccirillo, C., L Castro, P.M.: Calcium hydroxyapatite-based photocatalysts for environment remediation: characteristics, performances and future perspectives (2017). 1095-8630 (Electronic)

    Google ScholarĀ 

  • Predoi, D., Popa, C.L., Chapon, P., Groza, A., Iconaru, S.L.: Evaluation of the antimicrobial activity of different antibiotics enhanced with silver-doped hydroxyapatite thin films. LID E778 [pii] (2016). https://doi.org/10.3390/ma9090778. 1996-1944 (Print)

    ArticleĀ  Google ScholarĀ 

  • Rabiei, A., Blalock, T., Thomas, B., Cuomo, J., Yang, Y., Ong, J.: Microstructure, mechanical properties, and biological response to functionally graded HA coatings. Mater. Sci. Eng., C 27(3), 529ā€“533 (2007)

    ArticleĀ  Google ScholarĀ 

  • Rabinovich-Guilatt, L., Couvreur, P., Lambert, G., Dubernet, C.: Cationic vectors in ocular drug delivery. J. Drug Target. 12(9ā€“10), 623ā€“633 (2004)

    ArticleĀ  Google ScholarĀ 

  • Raucci, M.G., Demitri, C., Soriente, A., Fasolino, I., Sannino, A., Ambrosio, L.: Gelatin/nanoā€hydroxyapatite hydrogel scaffold prepared by solā€gel technology as filler to repair bone defects. J. Biomed. Mater. Res. 106(7), 2007ā€“2019 Part A (2018). Wiley. ISSN: 1549-3296. https://doi.org/10.1002/jbm.a.36395

    ArticleĀ  Google ScholarĀ 

  • Riaz, M., Zia, R., Ijaz, A., Hussain, T., Mohsin, M., Malik, A.: Synthesis of monophasic Ag doped hydroxyapatite and evaluation of antibacterial activity (2018). 1873-0191 (Electronic)

    Google ScholarĀ 

  • Roveri, N., Battistella, E., Foltran, I., Foresti, E., Iafisco, M., Lelli, M., Palazzo, B., Rimondini, L.: Synthetic biomimetic carbonate-hydroxyapatite nanocrystals for enamel remineralization. Adv. Mater. Res. 47ā€“50, 821ā€“824 (2008)

    ArticleĀ  Google ScholarĀ 

  • Sadat-Shojai, M., Atai, M., Nodehi, A., Khanlar, L.N.: Hydroxyapatite nanorods as novel fillers for improving the properties of dental adhesives: synthesis and application. Dent. Mater. 26(5), 471ā€“482 (2010)

    ArticleĀ  Google ScholarĀ 

  • Sadat-Shojai, M., Khorasani, M.-T., Dinpanah-Khoshdargi, E., Jamshidi, A.: Synthesis methods for nanosized hydroxyapatite with diverse structures. Acta Biomater. 9(8), 7591ā€“7621 (2013)

    ArticleĀ  Google ScholarĀ 

  • Sakamoto, A., Okamoto, T., Matsuda, S.: Unsintered hydroxyapatite and poly-l-lactide composite screws/plates for stabilizing beta-tricalcium phosphate bone implants (2018). 2005-4408 (Electronic)

    Google ScholarĀ 

  • Sampath Kumar, T.S., Madhumathi, K., Rubaiya, Y., Doble, M.: Dual mode antibacterial activity of ion substituted calcium phosphate nanocarriers for bone infections (2015). 2296-4185 (Print)

    Google ScholarĀ 

  • Sanjay, M., Madhu, P., Jawaid, M., Senthamaraikannan, P., Senthil, S., Pradeep, S.: Characterization and properties of natural fiber polymer composites: comprehensive review. J. Clean. Prod. 172, 566ā€“581 (2018)

    ArticleĀ  Google ScholarĀ 

  • Sato, K.: Mechanism of hydroxyapatite mineralization in biological systemsā€‰(review). J. Ceram. Soc. Jpn. 115(1338), 124ā€“130 (2007)

    ArticleĀ  Google ScholarĀ 

  • Sato, T., Kikuchi, M., Aizawa, M.: Preparation of hydroxyapatite/collagen injectable bone paste with an anti-washout property utilizing sodium alginate. Part 1: influences of excess supplementation of calcium compounds. J. Mater. Sci. Mater. Med. 28(3), 49 (2017)

    ArticleĀ  Google ScholarĀ 

  • Schreurs, W., Rosenberg, H.: Effect of silver ions on transport and retention of phosphate by Escherichia coli. J. Bacteriol. 152(1), 7ā€“13 (1982)

    Google ScholarĀ 

  • Seol, Y.-J., Kim, J.Y., Park, E.K., Kim, S.-Y., Cho, D.-W.: Fabrication of a hydroxyapatite scaffold for bone tissue regeneration using microstereolithography and molding technology. Microelectron. Eng. 86(4), 1443ā€“1446 (2009)

    ArticleĀ  Google ScholarĀ 

  • Shahmoradi, M., Rohanizadeh, R., Sonvico, F., Ghadiri, M., Swain, M.: Synthesis of stabilized hydroxyapatite nanosuspensions for enamel caries remineralization. LID (2018). https://doi.org/10.1111/adj.12624. 1834-7819 (Electronic)

    ArticleĀ  Google ScholarĀ 

  • Shanmugam, S., Gopal, B.: Copper substituted hydroxyapatite and fluorapatite: synthesis, characterization and antimicrobial properties. Ceram. Int. 40(10, Part A), 15655ā€“15662 (2014)

    ArticleĀ  Google ScholarĀ 

  • Slots, J., Ting, M.: Systemic antibiotics in the treatment of periodontal disease. Periodontology 2000 28(1), 106ā€“176 (2002)

    ArticleĀ  Google ScholarĀ 

  • Son, J.S., Appleford, M., Ong, J.L., Wenke, J.C., Kim, J.M., Choi, S.H., Oh, D.S.: Porous hydroxyapatite scaffold with three-dimensional localized drug delivery system using biodegradable microspheres. J. Control. Release 153(2), 133ā€“140 (2011)

    ArticleĀ  Google ScholarĀ 

  • Stamm, W.E.: Infections related to medical devices. Ann. Intern. Med. 89(5, Part_2), 764ā€“769 (1978)

    ArticleĀ  Google ScholarĀ 

  • Stanić, V., Dimitrijević, S., Antić-Stanković, J., Mitrić, M., Jokić, B., PlećaÅ”, I.B., Raičević, S.: Synthesis, characterization and antimicrobial activity of copper and zinc-doped hydroxyapatite nanopowders. Appl. Surf. Sci. 256(20), 6083ā€“6089 (2010)

    ArticleĀ  Google ScholarĀ 

  • Strietzel, F.P., Reichart, P.A., Graf, H.L.: Lateral alveolar ridge augmentation using a synthetic nano-crystalline hydroxyapatite bone substitution material (Ostim): preliminary clinical and histological results. Clin. Oral Implant. Res. 18(6), 743ā€“751 (2007)

    ArticleĀ  Google ScholarĀ 

  • Suchanek, W., Yoshimura, M.: Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants. J. Mater. Res. 13(01), 94ā€“117 (1998)

    ArticleĀ  Google ScholarĀ 

  • Sugiyama, S., Minami, T., Hayashi, H., Tanaka, M., Shigemoto, N., Moffat, J.B.: Partial oxidation of methane to carbon oxides and hydrogen on hydroxyapatite: enhanced selectivity to carbon monoxide with tetrachloromethane. Energy Fuels 10(3), 828ā€“830 (1996)

    ArticleĀ  Google ScholarĀ 

  • Sumer, B., Gao, J.: Theranostic nanomedicine for cancer. Nanomedicine 3(2), 137ā€“140 (2008)

    ArticleĀ  Google ScholarĀ 

  • Sun, W., Fan, J., Wang, S., Kang, Y., Du, J., Peng, X.: Biodegradable drug-loaded hydroxyapatite nanotherapeutic agent for targeted drug release in tumours. ACS Appl. Mater. Interfaces. 10(9), 7832ā€“7840 (2018)

    ArticleĀ  Google ScholarĀ 

  • Sundararaj, S.C., Thomas, M.V., Peyyala, R., Dziubla, T.D., Puleo, D.A.: Design of a multiple drug delivery system directed at periodontitis. Biomaterials 34(34), 8835ā€“8842 (2013)

    ArticleĀ  Google ScholarĀ 

  • Tadashi, K., Seishi, E., Keiko, M., Yuji, T., Tetsu, T., Osamu, S., Shinji, K.: First clinical application of octacalcium phosphate collagen composite in human bone defect. Tissue Eng., Part A 20(7ā€“8), 1336ā€“1341 (2014)

    Google ScholarĀ 

  • Tao, Z.S., Zhou, W.S., Qiang, Z., Tu, K.K., Huang, Z.L., Xu, H.M., Sun, T., Lv, Y.X., Cui, W., Yang, L.: Intermittent administration of human parathyroid hormone (1ā€“34) increases fixation of strontium-doped hydroxyapatite coating titanium implants via electrochemical deposition in ovariectomized rat femur (2016). 1530-8022 (Electronic)

    Google ScholarĀ 

  • Tao, Z.S., Bai, B.L., He, X.W., Liu, W., Li, H., Zhou, Q., Sun, T., Huang, Z.L., Tu, K.K., Lv, Y.X., Cui, W., Yang, L.: A comparative study of strontium-substituted hydroxyapatite coating on implantā€™s osseointegration for osteopenic rats (2016). 1741-0444 (Electronic)

    Google ScholarĀ 

  • Tao, Z.-S., Zhou, W.-S., He, X.-W., Liu, W., Bai, B.-L., Zhou, Q., Huang, Z.-L., Tu, K.-K., Li, H., Sun, T., Lv, Y.-X., Cui, W., Yang, L.: A comparative study of zinc, magnesium, strontium-incorporated hydroxyapatite-coated titanium implants for osseointegration of osteopenic rats. Mater. Sci. Eng. C 62, 226ā€“232 (2016)

    ArticleĀ  Google ScholarĀ 

  • Torres, J., Tamimi, I., Cabrejos-Azama, J., Tresguerres, I., Alkhraisat, M., LĆ³pez-Cabarcos, E., HernĆ”ndez, G., Tamimi, F.: Monetite granules versus particulate autologous bone in bone regeneration. Ann. Anat. Anatomischer Anzeiger 200, 126ā€“133 (2015)

    ArticleĀ  Google ScholarĀ 

  • Tripathi, G., Basu, B.: A porous hydroxyapatite scaffold for bone tissue engineering: physico-mechanical and biological evaluations. Ceram. Int. 38(1), 341ā€“349 (2012)

    ArticleĀ  Google ScholarĀ 

  • Trombelli, L., Simonelli, A., Pramstraller, M., Wikesjƶ, U.M.E., Farina, R.: Single flap approach with and without guided tissue regeneration and a hydroxyapatite biomaterial in the management of intraosseous periodontal defects. J. Periodontol. 81(9), 1256ā€“1263 (2010)

    ArticleĀ  Google ScholarĀ 

  • Tschoppe, P., Zandim, D.L., Martus, P., Kielbassa, A.M.: Enamel and dentine remineralization by nano-hydroxyapatite toothpastes. J. Dent. 39(6), 430ā€“437 (2011)

    ArticleĀ  Google ScholarĀ 

  • Uchida, A., Shinto, Y., Araki, N., Ono, K.: Slow release of anticancer drugs from porous calcium hydroxyapatite ceramic. J. Orthop. Res. 10(3), 440ā€“445 (1992)

    ArticleĀ  Google ScholarĀ 

  • Uskoković, V., Desai, T.A.: In vitro analysis of nanoparticulate hydroxyapatite/chitosan composites as potential drug delivery platforms for the sustained release of antibiotics in the treatment of osteomyelitis. J. Pharm. Sci. 103(2), 567ā€“579 (2014)

    ArticleĀ  Google ScholarĀ 

  • Uskokovic, V., Ghosh, S., Wu, V.M.: Antimicrobial hydroxyapatite-gelatin-silica composite pastes with tunable setting properties (2017). 2050-750X (Print)

    Google ScholarĀ 

  • Vahabzadeh, S., Roy, M., Bandyopadhyay, A., Bose, S.: Phase stability and biological property evaluation of plasma sprayed hydroxyapatite coatings for orthopedic and dental applications. Acta Biomater. 17, 47ā€“55 (2015)

    ArticleĀ  Google ScholarĀ 

  • Vallet-RegĆ­, M., GonzĆ”lez-Calbet, J.M.: Calcium phosphates as substitution of bone tissues. Prog. Solid State Chem. 32(1), 1ā€“31 (2004)

    ArticleĀ  Google ScholarĀ 

  • Vano, M., Derchi, G., Barone, A., Pinna, R., Usai, P., Covani, U.: Reducing dentine hypersensitivity with nano-hydroxyapatite toothpaste: a double-blind randomized controlled trial. Clin. Oral Invest. 22(1), 313ā€“320 (2018)

    ArticleĀ  Google ScholarĀ 

  • Vasir, J.K., Labhasetwar, V.: Quantification of the force of nanoparticle-cell membrane interactions and its influence on intracellular trafficking of nanoparticles. Biomaterials 29(31), 4244ā€“4252 (2008)

    ArticleĀ  Google ScholarĀ 

  • Venkatasubbu, G.D., Ramasamy, S., Avadhani, G.S., Ramakrishnan, V., Kumar, J.: Surface modification and paclitaxel drug delivery of folic acid modified polyethylene glycol functionalized hydroxyapatite nanoparticles. Powder Technol. 235, 437ā€“442 (2013)

    ArticleĀ  Google ScholarĀ 

  • Vyavhare, S., Sharma, D.S., Kulkarni,V.K.: Effect of three different pastes on remineralization of initial enamel lesion: an in vitro study (2015). 1053-4628 (Print)

    Google ScholarĀ 

  • Wahl, D.A., Czernuszka, J.T.: Collagen-hydroxyapatite composites for hard tissue repair. Eur. Cells Mater. 11, 43ā€“56 (2006)

    ArticleĀ  Google ScholarĀ 

  • Wang, L., Nancollas, G.H.: Pathways to biomineralization and biodemineralization of calcium phosphates: the thermodynamic and kinetic controls. Dalton Trans. (15), 2665ā€“2672 (2009)

    Google ScholarĀ 

  • Wang, Y., Liu, L., Guo, S.: Characterization of biodegradable and cytocompatible nano-hydroxyapatite/polycaprolactone porous scaffolds in degradation in vitro. Polym. Degrad. Stab. 95(2), 207ā€“213 (2010)

    ArticleĀ  Google ScholarĀ 

  • Wang, G.-H., Zhao, Y.-Z., Tan, J., Zhu, S.-H., Zhou, K.-C.: Arginine functionalized hydroxyapatite nanoparticles and its bioactivity for gene delivery. Trans. Nonferrous Metals Soc. China 25(2), 490ā€“496 (2015)

    ArticleĀ  Google ScholarĀ 

  • Wei, G., Ma, P.X.: Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering. Biomaterials 25(19), 4749ā€“4757 (2004)

    ArticleĀ  Google ScholarĀ 

  • Wei, M., Evans, J.H., Bostrom, T., GrĆøndahl, L.: Synthesis and characterization of hydroxyapatite, fluoride-substituted hydroxyapatite and fluorapatite. J. Mater. Sci.0020Mater. Med. 14(4), 311ā€“320 (2003)

    ArticleĀ  Google ScholarĀ 

  • Wei, T., Liu, J., Ma, H., Cheng, Q., Huang, Y., Zhao, J., Huo, S., Xue, X., Liang, Z., Liang, X.-J.: Functionalized nanoscale micelles improve drug delivery for cancer therapy in vitro and in vivo. Nano Lett. 13(6), 2528ā€“2534 (2013)

    ArticleĀ  Google ScholarĀ 

  • Wei, T., Chen, C., Liu, J., Liu, C., Posocco, P., Liu, X., Cheng, Q., Huo, S., Liang, Z., Fermeglia, M., Pricl, S., Liang, X.-J., Rocchi, P., Peng, L.: Anticancer drug nanomicelles formed by self-assembling amphiphilic dendrimer to combat cancer drug resistance. Proc. Natl. Acad. Sci. 112(10), 2978ā€“2983 (2015)

    ArticleĀ  Google ScholarĀ 

  • Wu, Y., Xia, L., Zhou, Y., Ma, W., Zhang, N., Chang, J., Lin, K., Xu, Y., Jiang, X.: Evaluation of osteogenesis and angiogenesis of icariin loaded on micro/nano hybrid structured hydroxyapatite granules as a local drug delivery system for femoral defect repair. J. Mater. Chem. B 3(24), 4871ā€“4883 (2015)

    ArticleĀ  Google ScholarĀ 

  • Xie, C.-M., Lu, X., Wang, K.-F., Meng, F.-Z., Jiang, O., Zhang, H.-P., Zhi, W., Fang, L.-M.: Silver nanoparticles and growth factors incorporated hydroxyapatite coatings on metallic implant surfaces for enhancement of osteoinductivity and antibacterial properties. ACS Appl. Mater. Interfaces 6(11), 8580ā€“8589 (2014)

    ArticleĀ  Google ScholarĀ 

  • Xie, C., Lu, X., Wang, K., Yuan, H., Fang, L., Zheng, X., Chan, C., Ren, F., Zhao, C.: Pulse electrochemical driven rapid layer-by-layer assembly of polydopamine and hydroxyapatite nanofilms via alternative redox in situ synthesis for bone regeneration. ACS Biomater. Sci. Eng. 2(6), 920ā€“928 (2016)

    ArticleĀ  Google ScholarĀ 

  • Xiong, H., Du, S., Ni, J., Zhou, J., Yao, J.: Mitochondria and nuclei dual-targeted heterogeneous hydroxyapatite nanoparticles for enhancing therapeutic efficacy of doxorubicin. Biomaterials 94, 70ā€“83 (2016)

    ArticleĀ  Google ScholarĀ 

  • Xiong, Z.-C., Yang, Z.-Y., Zhu, Y.-J., Chen, F.-F., Zhang, Y.-G., Yang, R.L.: Ultralong hydroxyapatite nanowires-based paper co-loaded with silver nanoparticles and antibiotic for long-term antibacterial benefit (2017). 1944ā€“8252 (Electronic)

    Google ScholarĀ 

  • Yan, L., Xiang, Y., Yu, J., Wang, Y., Cui, W.: Fabrication of antibacterial and antiwear hydroxyapatite coatings via in situ chitosan-mediated pulse electrochemical deposition. ACS Appl. Mater. Interfaces 9(5), 5023ā€“5030 (2017)

    ArticleĀ  Google ScholarĀ 

  • Yang, W., Shen, C., Ji, Q., An, H., Wang, J., Liu, Q., Zhang, Z.: Food storage material silver nanoparticles interfere with DNA replication fidelity and bind with DNA. Nanotechnology 20(8), 085102 (2009)

    ArticleĀ  Google ScholarĀ 

  • Ye, Q., Ohsaki, K., Li, K., Li, D.-J., Zhu, C.-S., Ogawa, T., Tenshin, S., Takano-Yamamoto, T.: Histological reaction to hydroxyapatite in the middle ear of rats. Auris Nasus Larynx 28(2), 131ā€“136 (2001)

    ArticleĀ  Google ScholarĀ 

  • Yih, T.C., Al-Fandi, M.: Engineered nanoparticles as precise drug delivery systems. J. Cell. Biochem. 97(6), 1184ā€“1190 (2006)

    ArticleĀ  Google ScholarĀ 

  • Yoo, H.S., Park, T.G.: Folate-receptor-targeted delivery of doxorubicin nano-aggregates stabilized by doxorubicinā€“PEGā€“folate conjugate. J. Control. Release 100(2), 247ā€“256 (2004)

    ArticleĀ  Google ScholarĀ 

  • Yunoki, S., Sugiura, H., Ikoma, T., Kondo, E., Yasuda, K., Tanaka, J.: Effects of increased collagen-matrix density on the mechanical properties andin vivoabsorbability of hydroxyapatiteā€“collagen composites as artificial bone materials. Biomed. Mater. 6(1), 015012 (2011)

    ArticleĀ  Google ScholarĀ 

  • Zhang, H.-B., Zhou, K.-C., Li, Z.-Y., Huang, S.-P.: Plate-like hydroxyapatite nanoparticles synthesized by the hydrothermal method. J. Phys. Chem. Solids 70(1), 243ā€“248 (2009a)

    ArticleĀ  Google ScholarĀ 

  • Zhang, P., Hong, Z., Yu, T., Chen, X., Jing, X.: In vivo mineralization and osteogenesis of nanocomposite scaffold of poly(lactide-co-glycolide) and hydroxyapatite surface-grafted with poly(l-lactide). Biomaterials 30(1), 58ā€“70 (2009b)

    ArticleĀ  Google ScholarĀ 

  • Zhang, L., Pei, J., Wang, H., Shi, Y., Niu, J., Yuan, F., Huang, H., Zhang, H., Yuan, G.: Facile preparation of poly(lactic acid)/brushite bilayer coating on biodegradable magnesium alloys with multiple functionalities for orthopedic application. ACS Appl. Mater. Interfaces. 9(11), 9437ā€“9448 (2017)

    ArticleĀ  Google ScholarĀ 

  • Zhang, Y., Liu, X., Li, Z., Zhu, S., Yuan, X., Cui, Z., Yang, X., Chu, P.K., Wu, S.: Nano Ag/ZnO-incorporated hydroxyapatite composite coatings: highly effective infection prevention and excellent osteointegration. ACS Appl. Mater. Interfaces 10(1), 1266ā€“1277 (2018)

    ArticleĀ  Google ScholarĀ 

  • Zhao, F., Yin, Y., Lu, W.W., Leong, J.C., Zhang, W., Zhang, J., Zhang, M., Yao, K.: Preparation and histological evaluation of biomimetic three-dimensional hydroxyapatite/chitosan-gelatin network composite scaffolds. Biomaterials 23(15), 3227ā€“3234 (2002)

    ArticleĀ  Google ScholarĀ 

  • Zhao, J., Liu, Y., Sun, W.-B., Zhang, H.: Amorphous calcium phosphate and its application in dentistry. Chem. Cent. J. 5(1), 40 (2011)

    ArticleĀ  Google ScholarĀ 

  • Zhao, L., Zhao, W., Liu, Y., Chen, X., Wang, Y.: Nano-hydroxyapatite-derived drug and gene co-delivery system for anti-angiogenesis therapy of breast cancer. Med. Sci. Monit.: Int. Med. J. Exp. Clin. Res. 23, 4723ā€“4732 (2017)

    ArticleĀ  Google ScholarĀ 

  • Zimmerli, W., Lew, P., Waldvogel, F.A.: Pathogenesis of foreign body infection. Evidence for a local granulocyte defect. J. Clin. Investig. 73(4), 1191ā€“1200 (1984)

    ArticleĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yahya Sefidbakht .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ghiasi, B., Sefidbakht, Y., Rezaei, M. (2019). Hydroxyapatite for Biomedicine and Drug Delivery. In: Rahmandoust, M., Ayatollahi, M. (eds) Nanomaterials for Advanced Biological Applications. Advanced Structured Materials, vol 104. Springer, Cham. https://doi.org/10.1007/978-3-030-10834-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10834-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10833-5

  • Online ISBN: 978-3-030-10834-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics