Skip to main content

Generating Second Order (Co)homological Information within AT-Model Context

  • Conference paper
  • First Online:
Computational Topology in Image Context (CTIC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11382))

Included in the following conference series:

  • 487 Accesses

Abstract

In this paper we design a new family of relations between (co)homology classes, working with coefficients in a field and starting from an AT-model (Algebraic Topological Model) AT(C) of a finite cell complex C These relations are induced by elementary relations of type “to be in the (co)boundary of” between cells. This high-order connectivity information is embedded into a graph-based representation model, called Second Order AT-Region-Incidence Graph (or AT-RIG) of C. This graph, having as nodes the different homology classes of C, is in turn, computed from two generalized abstract cell complexes, called primal and dual AT-segmentations of C. The respective cells of these two complexes are connected regions (set of cells) of the original cell complex C, which are specified by the integral operator of AT(C). In this work in progress, we successfully use this model (a) in experiments for discriminating topologically different 3D digital objects, having the same Euler characteristic and (b) in designing a parallel algorithm for computing potentially significant (co)homological information of 3D digital objects.

This work has been supported by the Spanish research projects MTM2016-81030-P (AEI/FEDER, UE) and TEC2012-37868-C04-02, and by the VPPI of the University of Seville. Darian Onchis gratefully acknowledges the support of the Austrian Science Fund FWF-P27516.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alexandroff, P.S.: Combinatorial Topology. Dover, New York (1998)

    MATH  Google Scholar 

  2. Ayala, R., Domínguez, E., Francés, A.R., Quintero, A.: Homotopy in digital spaces. In: Borgefors, G., Nyström, I., di Baja, G.S. (eds.) DGCI 2000. LNCS, vol. 1953, pp. 3–14. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44438-6_1

    Chapter  Google Scholar 

  3. Boykov, Y.Y., Jolly, M.P.: Interactive graph cuts for optimal boundary and region segmentation of objects in ND images. In: Proceedings of Eighth IEEE International Conference on Computer Vision, vol. 1, pp. 105–112 (2001)

    Google Scholar 

  4. Cadek, M., Krcal, M., Matousek, J., Vokrinek, L., Wagner, U.: Polynomial-time computation of homotopy groups and Postnikov systems in fixed dimension. SIAM J. Comput. 43(5), 1728–1780 (2014)

    Article  MathSciNet  Google Scholar 

  5. Carr, H.A., Weber, G.H., Sewell, C.M., Ahrens, J.P.: Parallel peak pruning for scalable SMP contour tree computation. In: IEEE 6th Symposium on Large Data Analysis and Visualization (LDAV), pp. 75–84 (2016)

    Google Scholar 

  6. Couprie, M., Bertrand, G.: Asymmetric parallel 3D thinning scheme and algorithms based on isthmuses. Pattern Recogn. Lett. 76, 22–31 (2016)

    Article  Google Scholar 

  7. Delfinado, C.J.A., Edelsbrunner, H.: An incremental algorithm for Betti numbers of simplicial complexes on the 3-sphere. Comput. Aided Geom. Des. 12(7), 771–784 (1995)

    Article  MathSciNet  Google Scholar 

  8. Díaz-del-Río, F., Real, P., Onchis, D.: A parallel homological spanning forest framework for 2D topological image analysis. Pattern Recogn. Lett. 83, 49–58 (2016)

    Article  Google Scholar 

  9. De Floriani, L., Mesmoudi, M.M., Morando, F., Puppo, E.: Decomposing non-manifold objects in arbitrary dimensions. Graph. Models 65(1), 2–22 (2003)

    Article  Google Scholar 

  10. Dumas, J.G., Saunders, B.D., Villard, G.: On efficient sparse integer matrix Smith normal form computations. J. Symbol. Comput. 32(1), 71–99 (2001)

    Article  MathSciNet  Google Scholar 

  11. Eilenberg, S., Mac Lane, S.: On the groups \(H (\pi, n)\), II: methods of computation. Ann. Math. 60, 49–139 (1954)

    Article  MathSciNet  Google Scholar 

  12. Forman, R.: Morse theory for cell complexes. Adv. Math. 134, 90–145 (1998)

    Article  MathSciNet  Google Scholar 

  13. Hilaga, M., Shinagawa, Y., Kohmura, T., Kunii, T.L.: Topology matching for fully automatic similarity estimation of 3D shapes. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, pp. 203–212. ACM (2001)

    Google Scholar 

  14. De Floriani, L., Fugacci, U., Iuricich, F.: Homological shape analysis through discrete morse theory. In: Breuß, M., Bruckstein, A., Maragos, P., Wuhrer, S. (eds.) Perspectives in Shape Analysis. MV, pp. 187–209. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-24726-7_9

    Chapter  MATH  Google Scholar 

  15. Dumas, J.G., Heckenbach, F., Saunders, D., Welker, V.: Computing simplicial homology based on efficient Smith normal form algorithms. In: Joswig, M., Takayama, N. (eds.) Algebra, Geometry and Software Systems, pp. 177–206. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-662-05148-1_10

    Chapter  Google Scholar 

  16. Fiorio, C.: A topologically consistent representation for image analysis: the frontiers topological graph. In: Miguet, S., Montanvert, A., Ubéda, S. (eds.) DGCI 1996. LNCS, vol. 1176, pp. 151–162. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-62005-2_13

    Chapter  Google Scholar 

  17. González-Díaz, R., Real, P.: On the cohomology of 3D digital images. Discret. Appl. Math. 147(2), 245–263 (2005)

    Article  MathSciNet  Google Scholar 

  18. González-Díaz, R., Jiménez, M.J., Medrano, B., Real, P.: Chain homotopies for object topological representations. Discret. Appl. Math. 157(3), 490–499 (2009)

    Article  MathSciNet  Google Scholar 

  19. Gonzalez-Lorenzo, A., Bac, A., Mari, J.L., Real, P.: Allowing cycles in discrete Morse theory. Topol. Appl. 228, 1–35 (2017)

    Article  MathSciNet  Google Scholar 

  20. Günther, D., Reininghaus, J., Wagner, H., Hotz, I.: Efficient computation of 3D Morse-Smale complexes and persistent homology using discrete Morse theory. Vis. Comput. 28(10), 959–969 (2012)

    Article  Google Scholar 

  21. Haarmann, J., Murphy, M.P., Peters, C.S., Staecker, P.C.: Homotopy equivalence in finite digital images. J. Math. Imaging Vis. 53(3), 288–302 (2015)

    Article  MathSciNet  Google Scholar 

  22. Harker, S., Mischaikow, K., Mrozek, M., Nanda, V.: Discrete Morse theoretic algorithms for computing homology of complexes and maps. Found. Comput. Math. 14(1), 151–184 (2014)

    Article  MathSciNet  Google Scholar 

  23. Hurewicz, W.: Homology and homotopy theory. In: Proceedings of the International Mathematical Congress, p. 344 (1950)

    Google Scholar 

  24. Klette, R.: Cell complexes through time. In: International Symposium on Optical Science and Technology, pp. 134–145. International Society for Optics and Photonics (2000)

    Google Scholar 

  25. Kong, T.Y., Rosenfeld, A.: Topological Algorithms for Digital Image Processing, vol. 19. Elsevier, Amsterdam (1996)

    Book  Google Scholar 

  26. Kovalevsky, V.: Algorithms in digital geometry based on cellular topology. In: Klette, R., Žunić, J. (eds.) IWCIA 2004. LNCS, vol. 3322, pp. 366–393. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30503-3_27

    Chapter  Google Scholar 

  27. Lefschetz, S.: Algebraic Topology, American Mathematical Society Colloquium Publications, vol. 27. American Mathematical Society, New York (1942)

    Google Scholar 

  28. Lienhardt, P.: Topological models for boundary representation: a comparison with n-dimensional generalized maps. Comput. Aided Des. 23(1), 59–82 (1991)

    Article  Google Scholar 

  29. Menger, K.: Allgemeine Räume und Cartesische Räume, Teil I, Amsterdam, pp. 476–482 (1926)

    Google Scholar 

  30. Molina-Abril, H., Real, P., Nakamura, A., Klette, R.: Connectivity calculus of fractal polyhedrons. Pattern Recogn. 48(4), 1150–1160 (2015)

    Article  Google Scholar 

  31. Molina-Abril, H., Real, P.: Homological spanning forest framework for 2D image analysis. Ann. Math. Artif. Intell. 64, 1–25 (2012)

    Article  MathSciNet  Google Scholar 

  32. Molina-Abril, H., Real, P.: Homological optimality in Discrete Morse Theory through chain homotopies. Pattern Recogn. Lett. 11, 1501–1506 (2012)

    Article  Google Scholar 

  33. Munkres, J.R.: Elements of Algebraic Topology. Addison-Wesley, Boston (1984)

    MATH  Google Scholar 

  34. Palmieri, J.H: Sage Module: Algebraic-Topological Model for a Cell Complex (2015). http://doc.sagemath.org/

  35. Pilarczyk, P., Real, P.: Computation of cubical homology, cohomology and (co)homological operations via chain contractions. Adv. Comput. Math. 41(1), 253–275 (2015)

    Article  MathSciNet  Google Scholar 

  36. Pudney, C.: Distance-ordered homotopic thinning: a skeletonization algorithm for 3D digital images. Comput. Vis. Image Underst. 72(3), 404–413 (1998)

    Article  Google Scholar 

  37. Real, P., Molina-Abril, H., Gonzalez-Lorenzo, A., Bac, A., Mari, J.L.: Searching combinatorial optimality using graph-based homology information. Appl. Algebra Eng. Commun. Comput. 26(1–2), 103–120 (2015)

    Article  MathSciNet  Google Scholar 

  38. Real, P., Diaz-del-Rio, F., Onchis, D.: Toward parallel computation of dense homotopy skeletons for nD digital objects. In: Brimkov, V.E., Barneva, R.P. (eds.) IWCIA 2017. LNCS, vol. 10256, pp. 142–155. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59108-7_12

    Chapter  Google Scholar 

  39. Romero, A., Rubio, J., Sergeraert, F.: Effective homology of filtered digital images. Pattern Recogn. Lett. 83, 23–31 (2016)

    Article  Google Scholar 

  40. Robins, V., Wood, P.J., Sheppard, A.P.: Theory and algorithms for constructing discrete Morse complexes from grayscale digital images. IEEE Trans. Pattern Anal. Mach. Intell. 33(8), 1646–1658 (2011)

    Article  Google Scholar 

  41. Saha, P.K., Borgefors, G., di Baja, G.S.: A survey on skeletonization algorithms and their applications. Pattern Recogn. Lett. 76, 3–12 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helena Molina-Abril .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Real, P., Molina-Abril, H., Díaz del Río, F., Onchis, D. (2019). Generating Second Order (Co)homological Information within AT-Model Context. In: Marfil, R., Calderón, M., Díaz del Río, F., Real, P., Bandera, A. (eds) Computational Topology in Image Context. CTIC 2019. Lecture Notes in Computer Science(), vol 11382. Springer, Cham. https://doi.org/10.1007/978-3-030-10828-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10828-1_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10827-4

  • Online ISBN: 978-3-030-10828-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics