Skip to main content

Part of the book series: Pseudo-Differential Operators ((PDO,volume 14))

Abstract

In this chapter we consider elliptic differential operators on a compact manifold and rather than taking the semi-classical limit (h →), we let h = 1 and study the distribution of large eigenvalues. Bordeaux Montrieux (Loi de Weyl presque sûre et résolvante pour des opérateurs différentiels non-autoadjoints, thèse, CMLS, Ecole Polytechnique, 2008. https://pastel.archives-ouvertes.fr/pastel-00005367, Ann Henri Poincaré 12:173–204, 2011) studied elliptic systems of differential operators on S 1 with random perturbations of the coefficients, and under some additional assumptions, he showed that the large eigenvalues obey the Weyl law almost surely. His analysis was based on a reduction to the semi-classical case, where he could use and extend the methods of Hager (Ann Henri Poincaré 7:1035–1064, 2006).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. W. Bordeaux Montrieux, Loi de Weyl presque sûre et résolvante pour des opérateurs différentiels non-autoadjoints, thèse, CMLS, Ecole Polytechnique, 2008. https://pastel.archives-ouvertes.fr/pastel-00005367

  2. W. Bordeaux Montrieux, Loi de Weyl presque sûre pour un système différentiel en dimension 1. Ann. Henri Poincaré 12(1), 173–204 (2011)

    Article  MathSciNet  Google Scholar 

  3. W. Bordeaux Montrieux, J. Sjöstrand, Almost sure Weyl asymptotics for non-self-adjoint elliptic operators on compact manifolds. Ann. Fac. Sci. Toulouse 19(3–4), 567–587 (2010). http://arxiv.org/abs/0903.2937

    Article  MathSciNet  Google Scholar 

  4. A. Grigis, Estimations asymptotiques des intervalles d’instabilité pour l’équation de Hill. Ann. Sci. École Norm. Sup. (4) 20(4), 641–672 (1987)

    Article  MathSciNet  Google Scholar 

  5. M. Hager, Instabilité spectrale semiclassique d’opérateurs non-autoadjoints. II. Ann. Henri Poincaré 7(6), 1035–1064 (2006)

    Article  MathSciNet  Google Scholar 

  6. M. Hitrik, J. Sjöstrand, Rational invariant tori, phase space tunneling, and spectra for non-selfadjoint operators in dimension 2. Ann. Sci. ENS 4 41(4), 511–571 (2008)

    Article  MathSciNet  Google Scholar 

  7. M. Hitrik, J. Sjöstrand, Rational invariant tori and band edge spectra for non-selfadjoint operators. J. Eur. Math. Soc. 20(2), 391–457 (2018). http://arxiv.org/abs/1502.06138

    Article  MathSciNet  Google Scholar 

  8. O. Kallenberg, Foundations of Modern Probability. Probability and Its Applications (New York) (Springer, New York, 1997)

    MATH  Google Scholar 

  9. H.H. Kuo, Gaussian Measures in Banach Spaces. Lecture Notes in Mathematics, vol. 463 (Springer, Berlin, 1975)

    Google Scholar 

  10. A. Melin, J. Sjöstrand, Determinants of pseudodifferential operators and complex deformations of phase space. Methods Appl. Anal. 9(2), 177–238 (2002). https://arxiv.org/abs/math/0111292

    MathSciNet  MATH  Google Scholar 

  11. A. Melin, J. Sjöstrand, Bohr-Sommerfeld quantization condition for non-selfadjoint operators in dimension 2. Astérique 284, 181–244 (2003). https://arxiv.org/abs/math/0111293

    MathSciNet  MATH  Google Scholar 

  12. R. Seeley, A simple example of spectral pathology for differential operators. Commun. Partial Differ. Equ. 11(6), 595–598 (1986)

    Article  MathSciNet  Google Scholar 

  13. J. Sjöstrand, Eigenvalue distribution for non-self-adjoint operators on compact manifolds with small multiplicative random perturbations. Ann. Fac. Sci. Toulouse 19(2), 277–301 (2010). http://arxiv.org/abs/0809.4182

    Article  MathSciNet  Google Scholar 

  14. J. Sjöstrand, Eigenvalue distributions and Weyl laws for semiclassical non-self-adjoint operators in 2 dimensions. Geometric Aspects of Analysis and Mechanics, vols. 345–352. Progress in Mathematics, vol. 292 (Birkhäuser/Springer, New York, 2011)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sjöstrand, J. (2019). Distribution of Large Eigenvalues for Elliptic Operators. In: Non-Self-Adjoint Differential Operators, Spectral Asymptotics and Random Perturbations. Pseudo-Differential Operators, vol 14. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-10819-9_18

Download citation

Publish with us

Policies and ethics