Skip to main content

Part of the book series: Pseudo-Differential Operators ((PDO,volume 14))

  • 709 Accesses

Abstract

In this chapter we will generalize Proposition 3.4.6 of Hager about counting the zeros of holomorphic functions of exponential growth. In Hager and Sjöstrand (Math Ann 342(1):177–243, 2008. http://arxiv.org/abs/math/0601381) we obtained such a generalization, by weakening the regularity assumptions on the functions ϕ. However, due to some logarithmic losses, we were not quite able to recover Hager’s original result, and we still had a fixed domain Γ with smooth boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Here “4” can be replaced by any fixed constant >2.

  2. 2.

    In the following we simply write C instead of C new, following the general rule that constants change from time to time.

  3. 3.

    That is, given by an equation f(z) = 0, where f belongs to a bounded family of smooth real functions with the property that f(z) = 0 ⇒ \(|\nabla f(z)|\ge 1/{\mathcal {O}}(1)\) uniformly for all f in the family.

  4. 4.

    Which says that if \(\Omega \Subset \mathbf {C}\) is a connected open set with smooth boundary and K ⊂ Ω a compact subset, then there exists a constant C = C Ω,K > 0 such that u(z 1) ≤ Cu(z 2) for all z 1, z 2 ∈ K and every non-negative harmonic function u on Ω, uniformly if Ω varies in a family of uniformly bounded subsets of C and \(\mathrm {dist}\,(K,\partial \Omega )\ge 1/{\mathcal {O}}(1)\) uniformly, see e.g., [4, Section 6.3].

  5. 5.

    This also follows more directly from the spherical mean value inequality for subharmonic functions.

References

  1. L. Ahlfors, Complex analysis. An Introduction to the Theory of Analytic Functions of One Complex Variable, 3rd edn. International Series in Pure and Applied Mathematics (McGraw-Hill Book Co., New York, 1978)

    Google Scholar 

  2. P. Bleher, R. Mallison Jr., Zeros of sections of exponential sums. Int. Math. Res. Not. 2006, 1–49 (2006), Art. ID 38937

    Google Scholar 

  3. D. Borisov, P. Exner, Exponential splitting of bound states in a waveguide with a pair of distant windows. J. Phys. A 37(10), 3411–3428 (2004)

    Article  MathSciNet  Google Scholar 

  4. E.B. Davies, Eigenvalues of an elliptic system. Math. Z. 243(4), 719–743 (2003)

    Article  MathSciNet  Google Scholar 

  5. T. Fischer, Existence, Uniqueness, and Minimality of the Jordan Measure Decomposition. http://arxiv.org/abs/1206.5449

  6. D. Grieser, D. Jerison, Asymptotics of the first nodal line of a convex domain. Invent. Math. 125(2), 197–219 (1996)

    Article  MathSciNet  Google Scholar 

  7. M. Hager, J. Sjöstrand, Eigenvalue asymptotics for randomly perturbed non-selfadjoint operators. Math. Ann. 342(1), 177–243 (2008). http://arxiv.org/abs/math/0601381

    Article  MathSciNet  Google Scholar 

  8. B. Helffer, J. Sjöstrand, Multiple wells in the semiclassical limit. I. Commun. Partial Differ. Equ. 9(4), 337–408 (1984)

    Article  MathSciNet  Google Scholar 

  9. M. Hitrik, J. Sjöstrand, Non-selfadjoint perturbations of selfadjoint operators in 2 dimensions IIIa. One branching point. Canad. J. Math. 60(3), 572–657 (2008)

    Article  Google Scholar 

  10. B.Ya. Levin, Distribution of Zeros of Entire Functions, English translation (American Mathematical Society, Providence, 1980)

    Google Scholar 

  11. A. Pfluger, Die Wertverteilung und das Verhalten von Betrag und Argument einer speciellen Klasse analytischen Funktionen I, II. Comment. Math. Helv. 11, 180–214 (1938), 12, 25–65 (1939)

    Google Scholar 

  12. B. Shiffman, S. Zelditch, S. Zrebiec, Overcrowding and hole probabilities for random zeros on complex manifolds. Ind. Univ. Math. J. 57(5), 1977–1997 (2008)

    Article  MathSciNet  Google Scholar 

  13. J. Sjöstrand, Counting zeros of holomorphic functions of exponential growth. J. Pseudodiffer. Operators Appl. 1(1), 75–100 (2010). http://arxiv.org/abs/0910.0346

    Article  MathSciNet  Google Scholar 

  14. J. Sjöstrand, M. Vogel, Large bi-diagonal matrices and random perturbations. J. Spectr. Theory 6(4), 977–1020 (2016). http://arxiv.org/abs/1512.06076

    Article  MathSciNet  Google Scholar 

  15. M. Sodin, Zeros of Gaussian analytic functions. Math. Res. Lett. 7, 371–381 (2000)

    Article  MathSciNet  Google Scholar 

  16. M. Sodin, B. Tsirelson, Random complex zeroes. III. Decay of the hole probability. Isr. J. Math. 147, 371–379 (2005)

    MATH  Google Scholar 

  17. S. Zrebiec, The zeros of flat Gaussian random holomorphic functions on ℂn, and hole probability. Mich. Math. J. 55(2), 269–284 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sjöstrand, J. (2019). Counting Zeros of Holomorphic Functions. In: Non-Self-Adjoint Differential Operators, Spectral Asymptotics and Random Perturbations. Pseudo-Differential Operators, vol 14. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-10819-9_12

Download citation

Publish with us

Policies and ethics