Skip to main content

Part of the book series: Pseudo-Differential Operators ((PDO,volume 14))

  • 706 Accesses

Abstract

Non-self-adjoint operators is an old, sophisticated and highly developed subject. See for instance Carleman for an early result on Weyl type asymptotics for the real parts of the large eigenvalues of operators that are close to self-adjoint ones, with later results by Markus and Matseev in the same direction. (See the classical works Weyl, Avakumović , Hörmander for the asymptotics of large eigenvalues of elliptic self-adjoint operators and Robert and Dimassi and Sjöstrand for corresponding results in the semi-classical case, not to mention numerous deep and sophisticated results by Ivrii and others.) Abstract theory with the machinery of s-numbers can be found in the book of Gohberg and Krein. Other quite classical results concern upper bounds on the number of eigenvalues in various regions of the complex plane and questions about completeness of the set of all generalized eigenvectors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    At first, the formula appeared more complicated, depending on the method of proof, and the simpler form was pointed out to me by E. Amar-Servat.

  2. 2.

    Including several articles of the author, often with minor changes.

References

  1. S. Agmon, On the eigenfunctions and on the eigenvalues of general elliptic boundary value problems. Commun. Pure Appl. Math 15, 119–147 (1962)

    Article  MathSciNet  Google Scholar 

  2. S. Agmon, Lectures on Elliptic Boundary Value Problems, Van Nostrand Mathematical Studies, No. 2 (D. Van Nostrand Co., Inc., Princeton, 1965)

    Google Scholar 

  3. V.G. Avakumović, Uber die Eigenfunktionen auf geschlossenen Riemannschen Mannigfaltigkeiten. Math. Z. 65, 324–344 (1956)

    Article  Google Scholar 

  4. M.S. Baouendi, J. Sjöstrand, Régularité analytique pour des opérateurs elliptiques singuliers en un point. Ark. Mat. 14(1), 9–33 (1976)

    Article  MathSciNet  Google Scholar 

  5. M.S. Baouendi, J. Sjöstrand, Analytic regularity for the Dirichlet problem in domains with conic singularities. Ann. Sc. Norm. Super. Pisa Cl. Sci. 4(3), 515–530 (1977)

    MathSciNet  MATH  Google Scholar 

  6. W. Bordeaux Montrieux, Loi de Weyl presque sûre et résolvante pour des opérateurs différentiels non-autoadjoints, thèse, CMLS, Ecole Polytechnique, 2008. https://pastel.archives-ouvertes.fr/pastel-00005367

  7. W. Bordeaux Montrieux, Estimation de résolvante et construction de quasimode près du bord du pseudospectre (2013). http://arxiv.org/abs/1301.3102

  8. W. Bordeaux Montrieux, J. Sjöstrand, Almost sure Weyl asymptotics for non-self-adjoint elliptic operators on compact manifolds. Ann. Fac. Sci. Toulouse 19(3–4), 567–587 (2010). http://arxiv.org/abs/0903.2937

    Article  MathSciNet  Google Scholar 

  9. N. Boussekkine, N. Mecherout, \(\mathcal {P}\mathcal {T}\) -symmetry and Schrödinger operators – the simple well case. Math. Nachr. 289(1), 13–27 (2016), French version at http://arxiv.org/pdf/1310.7335

  10. L. Boutet de Monvel, Hypoelliptic operators with double characteristics and related pseudo-differential operators. Commun. Pure Appl. Math. 27, 585–639 (1974)

    Article  MathSciNet  Google Scholar 

  11. T. Carleman, Über die asymptotische Verteilung der Eigenwerte partielle Differentialgleichungen, Berichten der mathematisch-physisch Klasse der Sächsischen Akad. der Wissenschaften zu Leipzig, LXXXVIII Band, Sitsung v. 15. Juni 1936

    Google Scholar 

  12. T. Christiansen, Several complex variables and the distribution of resonances in potential scattering. Commun. Math. Phys. 259(3), 711–728 (2005)

    Article  MathSciNet  Google Scholar 

  13. T. Christiansen, P.D. Hislop, The resonance counting function for Schrödinger operators with generic potentials. Math. Res. Lett. 12(5–6), 821–826 (2005)

    Article  MathSciNet  Google Scholar 

  14. T.J. Christiansen, M. Zworski, Probabilistic Weyl laws for quantized tori. Commun. Math. Phys. 299(2), 305–334 (2010). http://arxiv.org/abs/0909.2014

    Article  MathSciNet  Google Scholar 

  15. E.B. Davies, Semi-classical states for non-self-adjoint Schrödinger operators. Commun. Math. Phys. 200(1), 35–41 (1999)

    Article  Google Scholar 

  16. E.B. Davies, Pseudospectra, the harmonic oscillator and complex resonances. Proc. Roy. Soc. Lond. A 455, 585–599 (1999)

    Article  Google Scholar 

  17. E.B. Davies, Pseudopectra of differential operators. J. Operator Theory 43, 243–262 (2000)

    MathSciNet  Google Scholar 

  18. N. Dencker, J. Sjöstrand, M. Zworski, Pseudospectra of semiclassical (pseudo-)differential operators, Commun. Pure Appl. Math. 57(3), 384–415 (2004)

    Article  MathSciNet  Google Scholar 

  19. M. Dimassi, J. Sjöstrand, Spectral Asymptotics in the Semi-Classical Limit. London Mathematical Society Lecture Note Series, vol. 268 (Cambridge University Press, Cambridge, 1999)

    Google Scholar 

  20. I.C. Gohberg, M.G. Krein, Introduction to the Theory of Linear Non-selfadjoint Operators. Translations of Mathematical Monographs, vol. 18 (AMS, Providence, 1969)

    Google Scholar 

  21. A. Grigis, J. Sjöstrand, Microlocal Analysis for Differential Operators. London Mathematical Society Lecture Notes Series, vol. 196 (Cambridge University Press, Cambridge, 1994)

    Google Scholar 

  22. M. Hager, Instabilité spectrale semiclassique d’opérateurs non-autoadjoints, Thesis, 2005. https://tel.archives-ouvertes.fr/tel-00010848/

  23. M. Hager, Instabilité spectrale semiclassique d’opérateurs non-autoadjoints. II. Ann. Henri Poincaré 7(6), 1035–1064 (2006)

    Article  MathSciNet  Google Scholar 

  24. M. Hager, J. Sjöstrand, Eigenvalue asymptotics for randomly perturbed non-selfadjoint operators. Math. Ann. 342(1), 177–243 (2008). http://arxiv.org/abs/math/0601381

    Article  MathSciNet  Google Scholar 

  25. B. Helffer, Spectral Theory and Its Applications. Cambridge Studies in Advanced Mathematics, vol. 139 (Cambridge University Press, Cambridge, 2013)

    Google Scholar 

  26. M. Hitrik, L. Pravda-Starov, Spectra and semigroup smoothing for non-elliptic quadratic operators. Math. Ann. 344(4), 801–846 (2009)

    Article  MathSciNet  Google Scholar 

  27. M. Hitrik, K. Pravda-Starov, Eigenvalues and subelliptic estimates for non-selfadjoint semiclassical operators with double characteristics. Ann. Inst. Fourier (Grenoble) 63(3), 985–1032 (2013)

    Article  MathSciNet  Google Scholar 

  28. M. Hitrik, J. Sjöstrand, J. Viola, Resolvent estimates for elliptic quadratic differential operators. Anal. PDE 6(1), 181–196 (2013)

    Article  MathSciNet  Google Scholar 

  29. M. Hitrik, K. Pravda-Starov, J. Viola, From semigroups to subelliptic estimates for quadratic operators. Trans. Am. Math. Soc. 370(10), 7391–7415 (2018). https://arxiv.org/abs/1510.02072

    Article  MathSciNet  Google Scholar 

  30. L. Hörmander, Differential equations without solutions. Math. Ann. 140, 169–173 (1960)

    Article  MathSciNet  Google Scholar 

  31. L. Hörmander, Differential operators of principal type. Math. Ann. 140, 124–146 (1960)

    Article  MathSciNet  Google Scholar 

  32. L. Hörmander, The spectral function of an elliptic operator. Acta Math. 121, 193–218 (1968)

    Article  MathSciNet  Google Scholar 

  33. V. Ivrii, Microlocal Analysis and Precise Spectral Asymptotics. Springer Monographs in Mathematics (Springer, Berlin, 1998)

    Book  Google Scholar 

  34. O. Kallenberg, Foundations of Modern Probability. Probability and Its Applications (New York) (Springer, New York, 1997)

    MATH  Google Scholar 

  35. B.M. Levitan, Some questions of spectral theory of selfadjoint differential operators. Usp. Mat. Nauk (N.S.) 11(72), no. 6, 117–144 (1956)

    Google Scholar 

  36. A.S. Markus, Introduction to the Spectral Theory of Polynomial Operator Pencils, Translated from the Russian by H.H. McFaden. Translation ed. by B. Silver. With an appendix by M.V. Keldysh. Translations of Mathematical Monographs, vol. 71 (American Mathematical Society, Providence, 1988)

    Google Scholar 

  37. A.S. Markus, V.I. Matseev, Asymptotic behavior of the spectrum of close-to-normal operators. Funktsional. Anal. i Prilozhen. 13(3), 93–94 (1979), Functional Anal. Appl. 13(3), 233–234 (1979) (1980)

    Google Scholar 

  38. N. Mecherout, N. Boussekkine, T. Ramond, J. Sjöstrand, \(\mathcal {P}\mathcal {T}\) -symmetry and Schrödinger operators. The double well case. Math. Nachr. 289(7), 854–887 (2016). http://arxiv.org/abs/1502.06102

  39. M. Ottobre, G. Pavliotis, K. Pravda-Starov, Exponential return to equilibrium for hypoelliptic quadratic systems. J. Funct. Anal. 262, 4000–4039 (2012)

    Article  MathSciNet  Google Scholar 

  40. K. Pravda-Starov, A complete study of the pseudo-spectrum for the rotated harmonic oscillator. J. Lond. Math. Soc. (2) 73(3), 745–761 (2006)

    Article  MathSciNet  Google Scholar 

  41. K. Pravda-Starov, Subelliptic estimates for quadratic differential operators. Am. J. Math. 133, 39–89 (2011)

    Article  MathSciNet  Google Scholar 

  42. D. Robert, Autour de l’Approximation Semi-classique. Progress in Mathematics, vol. 68 (Birkhäuser, Boston, 1987)

    Google Scholar 

  43. J. Sjöstrand, Parametrices for pseudodifferential operators with multiple characteristics. Ark. Mat. 12(1), 85–130 (1974)

    Article  MathSciNet  Google Scholar 

  44. J. Sjöstrand, Eigenvalue distribution for non-self-adjoint operators with small multiplicative random perturbations. Ann. Fac. Sci. Toulouse 18(4), 739–795 (2009). http://arxiv.org/abs/0802.3584

    Article  MathSciNet  Google Scholar 

  45. J. Sjöstrand, Spectral properties of non-self-adjoint operators, Notes d’un minicours à Evian les Bains, 8–12 juin, 2009, Actes des Journées d’é.d.p. d’Évian 2009, published: http://jedp.cedram.org:80/jedp-bin/feuilleter?id=JEDP_2009___ preprint: http://arxiv.org/abs/1002.4844

  46. J. Sjöstrand, Eigenvalue distribution for non-self-adjoint operators on compact manifolds with small multiplicative random perturbations. Ann. Fac. Sci. Toulouse 19(2), 277–301 (2010). http://arxiv.org/abs/0809.4182

    Article  MathSciNet  Google Scholar 

  47. J. Sjöstrand, Resolvent Estimates for Non-self-adjoint Operators via Semi-groups. International Mathematical Series, vol. 13, pp. 359–384 Around the research of Vladimir Maz’ya, III (Springer/Tamara Rozhkovskaya Publisher, Novosibirsk, 2010). http://arxiv.org/abs/0906.0094

    Google Scholar 

  48. J. Sjöstrand, PT Symmetry and Weyl Asymptotics. The Mathematical Legacy of Leon Ehrenpreis, Springer Proceedings in Mathematics, vol. 16, pp. 299–308 (2012). http://arxiv.org/abs/1105.4746

    Article  MathSciNet  Google Scholar 

  49. J. Sjöstrand, Weyl Law for Semi-classical Resonances with Randomly Perturbed Potentials. Mém. de la SMF 136, 144 (2014). http://arxiv.org/abs/1111.3549

    MathSciNet  MATH  Google Scholar 

  50. J. Sjöstrand, M. Vogel, Interior eigenvalue density of Jordan matrices with random perturbations. In Analysis Meets Geometry: A Tribute to Mikael Passare. Trends in Mathematics, pp. 439–466 (Springer, Cham, 2017). http://arxiv.org/abs/1412.2230

    Google Scholar 

  51. L.N. Trefethen, Pseudospectra of linear operators. SIAM Rev. 39(3), 383–406 (1997)

    Article  MathSciNet  Google Scholar 

  52. L.N. Trefethen, M. Embree, Spectra and Pseudospectra. The Behavior of Nonnormal Matrices and Operators (Princeton University Press, Princeton, 2005)

    Google Scholar 

  53. J. Viola, Spectral projections and resolvent bounds for partially elliptic quadratic differential operators. J. Pseudo-Differ. Oper. Appl. 4, 145–221 (2013)

    Article  MathSciNet  Google Scholar 

  54. J. Viola, The norm of the non-self-adjoint harmonic oscillator semigroup. Integr. Equ. Oper. Theory 85(4), 513–538 (2016)

    Article  MathSciNet  Google Scholar 

  55. M. Vogel, The precise shape of the eigenvalue intensity for a class of non-selfadjoint operators under random perturbations. Ann. Henri Poincaré 18(2), 435–517 (2017). http://arxiv.org/abs/1401.8134

    Article  MathSciNet  Google Scholar 

  56. M. Vogel, Two point eigenvalue correlation for a class of non-selfadjoint operators under random perturbations. Commun. Math. Phys. 350(1), 31–78 (2017). http://arxiv.org/abs/1412.0414

    Article  MathSciNet  Google Scholar 

  57. H. Weyl, Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung). Math. Ann. 71(4), 441–479 (1912)

    Article  MathSciNet  Google Scholar 

  58. M. Zworski, A remark on a paper of E. B. Davies: “Semi-classical states for non-self-adjoint Schrödinger operators”. Proc. Am. Math. Soc. 129(10), 2955–2957 (2001)

    Google Scholar 

  59. M. Zworski, Numerical linear algebra and solvability of partial differential equations. Commun. Math. Phys. 229(2), 293–307 (2002)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Discussions with colleagues and coworkers have been a very important basis for this work. I am grateful to W. Bordeaux Montrieux, M. Hager, M. Hitrik, B. Helffer, K. Pravda-Starov, J. Viola, M. Vogel, X. P. Wang, M. Zworski and many others. We also thank the two referees for a very careful work and most useful comments.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sjöstrand, J. (2019). Introduction. In: Non-Self-Adjoint Differential Operators, Spectral Asymptotics and Random Perturbations. Pseudo-Differential Operators, vol 14. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-10819-9_1

Download citation

Publish with us

Policies and ethics