Skip to main content

Disease-Modifying Anti-rheumatic Drugs

  • Chapter
  • First Online:
Nijkamp and Parnham's Principles of Immunopharmacology

Abstract

Rheumatoid arthritis (RA) is the most common inflammatory rheumatic disease, with a worldwide prevalence of about 1%. Targeting the synovial membrane, cartilage and bone, untreated RA leads to joint destruction, disability and increased mortality. Although the total incidence of this disease is low, the level of ill health and economic burden is significant with the patients often partially or totally unemployed. Generally, the patients require long-term drug treatment and non-pharmacological approaches such as physiotherapy and psychosocial support. There are no reliably curative or disease-remitting therapies, although considerable gains have been made utilizing biologic therapies and novel small molecules to target specific CYTOKINES (TUMOUR NECROSIS FACTOR (TNF) and INTERLEUKINS such as IL-1, IL-6, IL-12/IL-23 and IL-17), cellular subsets (B CELLS, TH17 CELLS) and immune regulatory steps in RA (JANUS KINASE (JAK) pathway).

Final manuscript submitted on May 31, 2017.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nell VP, Machold KP, Eberl G, et al. Benefit of very early referral and very early therapy with disease-modifying anti-rheumatic drugs in patients with early rheumatoid arthritis. Rheumatology. 2004;43:906–14.

    Article  CAS  PubMed  Google Scholar 

  2. Karlson EW, Chang SC, Cui J, et al. Gene-environment interaction between HLA-DRB1 shared epitope and heavy cigarette smoking in predicting incident rheumatoid arthritis. Ann Rheum Dis. 2010;69(1):54–60.

    Article  CAS  PubMed  Google Scholar 

  3. Sugiyama D, Nishimura K, Tamaki K, et al. Impact of smoking as a risk factor for developing rheumatoid arthritis: a meta-analysis of observational studies. Ann Rheum Dis. 2010;69(1):70–81.

    Article  CAS  PubMed  Google Scholar 

  4. McInnes IB, Schett G. Cytokines in the pathogenesis of rheumatoid arthritis. Nat Rev Immunol. 2007;7(6):429–42.

    Article  CAS  PubMed  Google Scholar 

  5. Axmann R, Herman S, Zaiss M, et al. CTLA-4 directly inhibits osteoclast formation. Ann Rheum Dis. 2008;67(11):1603–9.

    Article  CAS  PubMed  Google Scholar 

  6. Kremer JM. Selective costimulation modulators: a novel approach for the treatment of rheumatoid arthritis. J Clin Rheumatol. 2005;11(3 Suppl):S55–62.

    Article  PubMed  Google Scholar 

  7. Mavers M, Ruderman EM, Perlman H. Intracellular signal pathways: potential for therapies. Curr Rheumatol Rep. 2009;11(5):378–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. National Collaborating Centre for Chronic Conditions. Rheumatoid arthritis: national clinical guideline for management and treatment in adults. London: Royal College of Physicians; 2009.

    Google Scholar 

  9. Singh JA, Saag KG, Bridges SL, et al. 2015 American College of Rheumatology guideline for the treatment of rheumatoid arthritis. Arthritis Care Res. 2016;68(1):1–25.

    Article  Google Scholar 

  10. van der Woude D, Young A, Jayakumar K, et al. Prevalence of and predictive factors for sustained disease-modifying antirheumatic drug-free remission in rheumatoid arthritis: results from two large early arthritis cohorts. Arthritis Rheum. 2009;60(8):2262–71.

    Article  PubMed  Google Scholar 

  11. Pincus T, Stein CM. Why randomised controlled trials do not depict accurately long-term ourcomes in rheumatoid arthritis: some explanations and suggestions for future studies. Clin Exp Rheumatol. 1997;15(Suppl 17):S27–38.

    PubMed  Google Scholar 

  12. Xu Z, Wang Q, Zhuang Y, et al. Subcutaneous bioavailability of golimumab at 3 different injection sites in healthy subjects. J Clin Pharmacol. 2010;50:276–84.

    Article  CAS  PubMed  Google Scholar 

  13. St Clair EW, Wagner CL, Fasanmade AA, et al. The relationship of serum infliximab concentrations to clinical improvement in rheumatoid arthritis: results from ATTRACT, a multicenter, randomized, double-blind, placebo-controlled trial. Arthritis Rheum. 2002;46(6):1451–9.

    Article  CAS  PubMed  Google Scholar 

  14. Mulleman D, Chu Miow Lin D, Ducourau E, et al. Trough infliximab concentrations predict efficacy and sustained control of disease activity in rheumatoid arthritis. Ther Drug Monit. 2010;32(2):232–6.

    CAS  PubMed  Google Scholar 

  15. Mori S. A relationship between pharmacokinetics (PK) and the efficacy of infliximab for patients with rheumatoid arthritis: characterization of infliximab-resistant cases and PK-based modified therapy. Mod Rheumatol. 2007;17(2):83–91.

    Article  CAS  PubMed  Google Scholar 

  16. Tracey D, Klareskog L, Sasso EH, et al. Tumor necrosis factor antagonist mechanisms of action: a comprehensive review. Pharmacol Ther. 2008;117(2):244–79.

    Article  CAS  PubMed  Google Scholar 

  17. Hetland ML, Christensen IJ, Tarp U, et al. Direct comparison of treatment responses, remission rates, and drug adherence in patients with rheumatoid arthritis treated with adalimumab, etanercept, or infliximab: results from eight years of surveillance of clinical practice in the nationwide Danish DANBIO registry. Arthritis Rheum. 2010;62(1):22–32.

    Article  CAS  PubMed  Google Scholar 

  18. Stuhlmuller B, Haupl T, Hernandez MM, et al. CD11c as a transcriptional biomarker to predict response to anti-TNF monotherapy with adalimumab in patients with rheumatoid arthritis. Clin Pharmacol Ther. 2010;87(3):311–21.

    Article  CAS  PubMed  Google Scholar 

  19. Zhou H, Jang H, Fleischmann RM, et al. Pharmacokinetics and safety of golimumab, a fully human anti-TNF-alpha monoclonal antibody, in subjects with rheumatoid arthritis. J Clin Pharmacol. 2007;47(3):383–96.

    Article  CAS  PubMed  Google Scholar 

  20. Weisman MH, Moreland LW, Furst DE, et al. Efficacy, pharmacokinetic, and safety assessment of adalimumab, a fully human anti-tumor necrosis factor-alpha monoclonal antibody, in adults with rheumatoid arthritis receiving concomitant methotrexate: a pilot study. Clin Ther. 2003;25(6):1700–21.

    Article  CAS  PubMed  Google Scholar 

  21. Breedveld F, Agarwal S, Yin M, et al. Rituximab pharmacokinetics in patients with rheumatoid arthritis: B-cell levels do not correlate with clinical response. J Clin Pharmacol. 2007;47(9):1119–28.

    Article  CAS  PubMed  Google Scholar 

  22. Ma Y, Lin BR, Lin B, et al. Pharmacokinetics of CTLA4Ig fusion protein in healthy volunteers and patients with rheumatoid arthritis. Acta Pharmacol Sinica. 2009;30:363–71.

    Google Scholar 

  23. Korth-Bradley JM, Rubin AS, Hanna RK, et al. The pharmacokinetics of etanercept in healthy volunteers. Ann Pharmacother. 2000;34(2):161–4.

    Article  CAS  PubMed  Google Scholar 

  24. Askling J, Dixon W. The safety of anti-tumour necrosis factor therapy in rheumatoid arthritis. Curr Opin Rheumatol. 2008;20(2):138–44.

    Article  CAS  PubMed  Google Scholar 

  25. Askling J, Fored CM, Brandt L, et al. Risks of solid cancers in patients with rheumatoid arthritis and after treatment with tumour necrosis factor antagonists. Ann Rheum Dis. 2005;64(10):1421–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Askling J, Fored CM, Baecklund E, et al. Haematopoietic malignancies in rheumatoid arthritis: lymphoma risk and characteristics after exposure to tumour necrosis factor antagonists. Ann Rheum Dis. 2005;64(10):1414–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Diak P, Siegel J, La Grenade L, et al. Malignancy in children and tumor necrosis factor- blockers: forty-eight cases reported to the food and drug administration. Arthritis Rheum. 2010;62(8):2517–24.

    Article  PubMed  Google Scholar 

  28. Korhonen R, Moilanen E. Anti-CD20 antibody rituximab in the treatment of rheumatoid arthritis. Basic Clin Pharmacol Toxicol. 2010;106(1):13–21.

    CAS  PubMed  Google Scholar 

  29. Perosa F, Prete M, Racanelli V, et al. CD20-depleting therapy in autoimmune diseases: from basic research to the clinic. J Intern Med. 2010;267(3):260–77.

    Article  CAS  PubMed  Google Scholar 

  30. Smolen JS, Keystone EC, Emery P, et al. Consensus statement on the use of rituximab in patients with rheumatoid arthritis. Ann Rheum Dis. 2007;66(2):143–50.

    Article  CAS  PubMed  Google Scholar 

  31. Vital EM, Dass S, Rawstron AC, et al. Management of nonresponse to rituximab in rheumatoid arthritis: predictors and outcome of re-treatment. Arthritis Rheum. 2010;62(5):1273–9.

    Article  CAS  PubMed  Google Scholar 

  32. Kim GW, Lee NR, Pi RH, et al. Il-6 inhibitors for treatment of rheumatoid arthritis: past, present, and future. Arch Pharm Res. 2015;38:575–84.

    Article  CAS  PubMed  Google Scholar 

  33. Semerano L, Thiolat A, Minichiello E, et al. Targeting IL-6 for the treatment of rheumatoid arthritis: phase II investigational drugs. Expert Opin Investig Drugs. 2014;23(7):979–99.

    Article  CAS  PubMed  Google Scholar 

  34. Dayer JM, Choy E. Therapeutic targets in rheumatoid arthritis: the interleukin-6 receptor. Rheumatology (Oxford). 2010;49(1):15–24.

    Article  CAS  Google Scholar 

  35. Nishimoto N, Hashimoto J, Miyasaka N, et al. Study of active controlled monotherapy used for rheumatoid arthritis, an IL-6 inhibitor (SAMURAI): evidence of clinical and radiographic benefit from an x ray reader-blinded randomised controlled trial of tocilizumab. Ann Rheum Dis. 2007;66(9):1162–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fleischmann RM, Halland AM, Brzosko M, et al. Tocilizumab inhibits structural joint damage and improves physical function in patients with rheumatoid arthritis and inadequate responses to methotrexate: LITHE study 2-year results. J Rheumatol. 2013;40(2):113–26.

    Article  CAS  PubMed  Google Scholar 

  37. Maini RN, Taylor PC, Szechinski J, et al. Double-blind randomized controlled clinical trial of the interleukin-6 receptor antagonist, tocilizumab, in European patients with rheumatoid arthritis who had an incomplete response to methotrexate. Arthritis Rheum. 2006;54(9):2817–29.

    Article  CAS  PubMed  Google Scholar 

  38. Gabay C, Emery P, van Vollenhoven R, et al. Tocilizumab monotherapy versus adalimumab monotherapy for treatment of rheumatoid arthritis (ADACTA): a randomised, double-blind, controlled phase 4 trial. Lancet. 2013;381:1541–50.

    Article  CAS  PubMed  Google Scholar 

  39. Villiger PM, Adler S, Kuchen S, et al. Tocilizumab for induction and maintenance of remission in giant cell arteritis: a phase 2, randomised, double-blind, placebo-controlled trial. Lancet. 2016;387(10031):1921–7.

    Article  CAS  PubMed  Google Scholar 

  40. Bruce SP, Boyce EG. Update on abatacept: a selective costimulation modulator for rheumatoid arthritis. Ann Pharmacother. 2007;41(7):1153–62.

    Article  CAS  PubMed  Google Scholar 

  41. Goëb V, Buch MH, Vital EM, et al. Costimulation blockade in rheumatic diseases: where we are? Curr Opin Rheumatol. 2009;21(3):244–50.

    Article  PubMed  Google Scholar 

  42. Genant HK, Peterfy CG, Westhovens R, et al. Abatacept inhibits progression of structural damage in rheumatoid arthritis: results from the long-term extension of the AIM trial. Ann Rheum Dis. 2008;67(8):1084–9.

    Article  CAS  PubMed  Google Scholar 

  43. Weinblatt M, Schiff M, Goldman A, et al. Selective costimulation modulation using abatacept in patients with active rheumatoid arthritis while receiving etanercept: a randomised clinical trial. Ann Rheum Dis. 2007;66(2):228–34.

    Article  CAS  PubMed  Google Scholar 

  44. Kavanaugh A, Puig L, Gottlieb AB, et al. Maintenance of clinical efficacy and radiographic benefit through two years of ustekinumab therapy in patients with active psoriatic arthritis: Results from a randomized, placebo-controlled phase III trial. Arthritis Care Res. 2015;67(12):1739–49.

    Article  CAS  Google Scholar 

  45. Feagan BG, Sandborn WJ, Gasink C, et al. Ustekinumab as induction and maintenance therapy for Crohn’s disease. N Engl J Med. 2016;375(20):1946–60.

    Article  CAS  PubMed  Google Scholar 

  46. Fragoulis GE, Siebert S, McInnes IB. Therapeutic targeting of IL-17 and IL-23 cytokines in immune-mediated diseases. Annu Rev Med. 2016;67:337–53.

    Article  CAS  PubMed  Google Scholar 

  47. Langley RG, Elewski BE, Lebwohl M, et al. Secukinumab in plaque psoriasis—results of two phase 3 trials. N Engl J Med. 2014;371(4):326–38.

    Article  CAS  PubMed  Google Scholar 

  48. McInnes IB, Mease PJ, Kirkham B, et al. Secukinumab, a human anti-interleukin-17A monoclonal antibody, in patients with psoriatic arthritis (FUTURE 2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2015;386(9999):1137–46.

    Article  CAS  PubMed  Google Scholar 

  49. Kunwar S, Dahal K, Sharma S. Anti-IL-17 therapy in treatment of rheumatoid arthritis: a systematic literature review and meta-analysis of randomized controlled trials. Rheumatol Int. 2016;36:1065–75.

    Article  CAS  PubMed  Google Scholar 

  50. Aronson JK, Furner RE. How similar are biosimilars. BMJ. 2016;353:i2721.

    Article  PubMed  Google Scholar 

  51. Jung SK, Lee KH, Jeon JW, et al. Physicochemical characterization of Remsima. MAbs. 2014;6(5):1163–77.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Committee for Medicinal Products for Human Use EMA. Inflectra: assessment report. EMA/CHMP/589422/2013. 2013. http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Public_assessment. Accessed 1 Nov2016.

  53. Yang BB, Baughman S, Sullivan JT. Pharmacokinetics of anakinra in subjects with different levels of renal function. Clin Pharmacol Ther. 2003;74(1):85–94.

    Article  CAS  PubMed  Google Scholar 

  54. Roos JC, Ostor AJ. Anti-tumor necrosis factor å and the risk of JC virus infection. Arthritis Rheum. 2006;54:381–2.

    Article  PubMed  Google Scholar 

  55. Fleischmann RM. Progressive multifocal leukoencephalopathy following rituximab treatment in a patient with rheumatoid arthritis. Arthritis Rheum. 2009;60(11):3225–8.

    Article  CAS  PubMed  Google Scholar 

  56. Kremer J, Ritchlin C, Mendelsohn A, et al. Golimumab, a new human anti-tumor necrosis factor alpha antibody, administered intravenously in patients with active rheumatoid arthritis: forty-eight-week efficacy and safety results of a phase III randomized, double-blind, placebo-controlled study. Arthritis Rheum. 2010;62(4):917–28.

    Article  CAS  PubMed  Google Scholar 

  57. Vermeire S, Van Assche G, Rutgeerts P. Serum sickness, encephalitis and other complications of anti-cytokine therapy. Best Pract Res Clin Gastroenterol. 2009;23(1):101–12.

    Article  CAS  PubMed  Google Scholar 

  58. Gubner R, August S, Ginsberg V. Therapeutic suppression of tissue reactivity. II. Effect of aminopterin in rheumatoid arthritis and psoriasis. Am J Med Sci. 1951;221(2):176–82.

    Article  CAS  PubMed  Google Scholar 

  59. Seideman P, Beck O, Eksborg S, et al. The pharmacokinetics of methotrexate and its 7-hydroxy metabolite in patients with rheumatoid arthritis. Brit J Clin Pharmacol. 1993;35(4):409–12.

    Article  CAS  Google Scholar 

  60. Kremer JM, Petrillo GF, Hamilton RA. Pharmacokinetics and renal function in patients with rheumatoid arthritis receiving a standard dose of oral weekly methotrexate: association with significant decreases in creatinine clearance and renal clearance of the drug after 6 months of therapy. J Rheumatol. 1995;22:38–40.

    CAS  PubMed  Google Scholar 

  61. Cronstein BN. Molecular therapeutics. Methotrexate and its mechanism of action. Arthritis Rheum. 1996;39:1951–60.

    Article  CAS  PubMed  Google Scholar 

  62. Stewart CF, Fleming RA, Germain BF, et al. Aspirin alters methotrexate disposition in rheumatoid arthritis. Arthritis Rheum. 1991;34:1514–20.

    Article  CAS  PubMed  Google Scholar 

  63. Bannwarth B, Pehourcq F, Schaeverbeke T, et al. Clinical pharmacokinetics of low-dose pulse methotrexate in rheumatoid arthritis. Clin Pharmacokinet. 1996;30:194–210.

    Article  CAS  PubMed  Google Scholar 

  64. Stamp LK, O'Donnell JL, Chapman PT, et al. Methotrexate polyglutamate concentrations are not associated with disease control in rheumatoid arthritis patients receiving long-term methotrexate therapy. Arthritis Rheum. 2010;62(2):359–68.

    Article  CAS  PubMed  Google Scholar 

  65. Dervieux T, Kremer J. Methotrexate polyglutamate concentrations are not associated with disease control in rheumatoid arthritis patients receiving long-term methotrexate therapy: comments on the article by Stamp et al. Arthritis Rheum. 2010;62(8):2559–60.

    Article  PubMed  Google Scholar 

  66. Ranganathan P, Culverhouse R, Marsh S, et al. Methotrexate (MTX) pathway gene polymorphisms and their effects on MTX toxicity in Caucasian and African American patients with rheumatoid arthritis. J Rheumatol. 2008;35(4):572–9.

    CAS  PubMed  Google Scholar 

  67. Wessels JA, van der Kooij SM, le Cessie S, et al. A clinical pharmacogenetic model to predict the efficacy of methotrexate monotherapy in recent-onset rheumatoid arthritis. Arthritis Rheum. 2007;56(6):1765–75.

    Article  CAS  PubMed  Google Scholar 

  68. Seideman P, Beck O, Eksborg S, et al. The pharmacokinetics of methotrexate and its 7-hydroxy metabolite in patients with rheumatoid arthritis. Br J Clin Pharmacol. 1993;35:409–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Cutolo M, Bisso A, Sulli A, et al. Antiproliferative and antiinflammatory effects of methotrexate on cultured differentiating myeloid monocytic cells (THP-1) but not on synovial macrophages from patients with rheumatoid arthritis. J Rheumatol. 2000;27:2551–1557.

    CAS  PubMed  Google Scholar 

  70. Cutolo M, Sulli A, Pizzorni C, et al. Anti-inflammatory mechanisms of methotrexate in rheumatoid arthritis. Ann Rheum Dis. 2001;60:729–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Montesinos MC, Desai A, Delano D, et al. Adenosine A2A or A3 receptors are required for inhibition of inflammation by methotrexate and its analog MX-68. Arthritis Rheum. 2003;48:240–7.

    Article  CAS  PubMed  Google Scholar 

  72. Smolenska Z, Kaznowska Z, Zarowny D, et al. Effect of methotrexate on blood purine and pyrimidine levels in patients with rheumatoid arthritis. Rheumatology (Oxford). 1999;38:997–1002.

    Article  CAS  Google Scholar 

  73. Visser K, van der Heijde D. Optimal dosage and route of administration of methotrexate in rheumatoid arthritis: a systematic review of the literature. Ann Rheum Dis. 2009;68(7):1094–9. https://doi.org/10.1136/ard.2008.092668.

    Article  CAS  PubMed  Google Scholar 

  74. Strand V, Cohen S, Schiff M, et al. Treatment of active rheumatoid arthritis with leflunomide compared with placebo and methotrexate. Arch Intern Med. 1999;159:2542–50.

    Article  CAS  PubMed  Google Scholar 

  75. Cohen S, Cannon GW, Schiff M, et al. Two-year, blinded, randomized, controlled trial of treatment of active rheumatoid arthritis with leflunomide compared with methotrexate. Arthritis Rheum. 2001;44:1984–92.

    Article  CAS  PubMed  Google Scholar 

  76. Emery P, Breedveld F, Lemmel E, et al. A comparison of the efficacy and safety of leflunomide and methotrexate for the treatment of rheumatoid arthritis. Rheumatology. 2000;39:655–65.

    Article  CAS  PubMed  Google Scholar 

  77. Dougados M, Combe B, Cantagrel A, et al. Combination therapy in early rheumatoid arthritis: a randomised, controlled, double blind 52 week clinical trial of sulphasalazine and methotrexate compared with the single components. Ann Rheum Dis. 1999;58:220–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Bathon JM, Martin RW, Fleischmann RM, et al. A comparison of etanercept and methotrexate in patients with early rheumatoid arthritis. N Engl J Med. 2000;343:1586–93.

    Article  CAS  PubMed  Google Scholar 

  79. Buchbinder R, Hall S, Sambrook PN, et al. Methotrexate therapy in rheumatoid arthritis: a life table review of 587 patients treated in community practice. J Rheumatol. 1993;20:639–44.

    CAS  PubMed  Google Scholar 

  80. Hoekstra M, van de Laar M, Bernelot Moens H, et al. Longterm observational study of methotrexate use in a Dutch cohort of 1022 patients with rheumatoid arthritis. J Rheumatol. 2003;30:2325–9.

    CAS  PubMed  Google Scholar 

  81. Whittle SL, Hughes RA. Folate supplementation and methotrexate treatment in rheumatoid arthritis: a review. Rheumatology (Oxford). 2004;43:267–71.

    Article  CAS  Google Scholar 

  82. Merrill JT, Shen C, Schreibman D, et al. Adenosine A1 receptor promotion of multinucleated giant cell formation by human monocytes: a mechanism for methotrexate-induced nodulosis in rheumatoid arthritis. Arthritis Rheum. 1997;40(7):1308–15.

    CAS  PubMed  Google Scholar 

  83. Abraham Z, Rozenbaum M, Rosner I. Colchicine therapy for low-dose-methotrexate-induced accelerated nodulosis in a rheumatoid arthritis patient. J Dermatol. 1999;26(10):691–4.

    Article  CAS  PubMed  Google Scholar 

  84. Alarcón GS, Kremer JM, Macaluso M, et al. Risk factors for methotrexate-induced lung injury in patients with rheumatoid arthritis: A multicentre, case-control study. Methotrexate study group. Ann Intern Med. 1997;127:356–64.

    Article  PubMed  Google Scholar 

  85. Saag KG, Teng GG, Patkar NM, et al. American College of Rheumatology 2008 recommendations for the use of nonbiologic and biologic disease-modifying antirheumatic drugs in rheumatoid arthritis. Arthritis Rheum. 2008;59(6):762–84.

    Article  CAS  PubMed  Google Scholar 

  86. Fathi N, Mitros F, Hoffman J, et al. Longitudinal measurement of methotrexate liver concentrations does not correlate with liver damage, clinical efficacy, or toxicity during a 3.5 year double blind study in rheumatoid arthritis. J Rheumatol. 2002;29:2092–8.

    CAS  PubMed  Google Scholar 

  87. McLachlan A, Tett S, Cutler D, et al. Bioavailability of hydroxychloroquine tablets in patients with rheumatoid arthritis. Br J Clin Rheumatol. 1994;33:235–9.

    Article  CAS  Google Scholar 

  88. Wiegmann K, Schutze S, Machleidt T, et al. Functional dichotomy of neutral and acidic sphingomyelinases in tumour necrosis factor signaling. Cell. 1994;78:1005–15.

    Article  CAS  PubMed  Google Scholar 

  89. Sanders M. A review of controlled clinical trials examining the effects of antimalarial compounds and gold compounds on radiographic progression in rheumatoid arthritis. J Rheumatol. 2000;27:523–9.

    CAS  PubMed  Google Scholar 

  90. Tett S, Day R, Cutler D. Concentration-effect relationship of hydroxychloroquine in rheumatoid arthritis-a cross sectional study. J Rheumatol. 1993;20:1874–9.

    CAS  PubMed  Google Scholar 

  91. Davis JP, Cain GA, Pitts WJ, et al. The immunosuppressive metabolite of leflunomide is a potent inhibitor of human dihydroorotate dehydrogenase. Biochemistry. 1996;35(4):1270–3.

    Article  CAS  PubMed  Google Scholar 

  92. Rozman B. Clinical pharmacokinetics of leflunomide. Clin Pharmacokinet. 2002;41(6):421–30.

    Article  CAS  PubMed  Google Scholar 

  93. Kalden JR, Schattenkirchner M, Sorensen H, et al. The efficacy and safety of leflunomide in patients with active rheumatoid arthritis: a five-year followup study. Arthritis Rheum. 2003;48(6):1513–20.

    Article  CAS  PubMed  Google Scholar 

  94. Weinblatt ME, Kremer JM, Coblyn JS, et al. Pharmacokinetics, safety, and efficacy of combination treatment with methotrexate and leflunomide in patients with active rheumatoid arthritis. Arthritis Rheum. 1999;42(7):1322–8.

    Article  CAS  PubMed  Google Scholar 

  95. Remer CF, Weisman MH, Wallace DJ. Benefits of leflunomide in systemic lupus erythematosus: a pilot observational study. Lupus. 2001;10(7):480–3.

    Article  CAS  PubMed  Google Scholar 

  96. Kaplan MJ. Leflunomide aventis pharma. Curr Opin Investig Drugs. 2001;2(2):222–30.

    CAS  PubMed  Google Scholar 

  97. Chakravarty EF, Sanchez-Yamamoto D, Bush TM. The use of disease modifying antirheumatic drugs in women with rheumatoid arthritis of childbearing age: a survey of practice patterns and pregnancy outcomes. J Rheumatol. 2003;30(2):241–6.

    PubMed  Google Scholar 

  98. Svartz N. Salazopyrin, a new sulfanilamide preparation: a. therapeutic results in rheumatic polyarthritis; b. therapeutic results in ulcerative colitis; c. toxic manifestations in treatment with sulfanilamide preparations. Acta Med Scand. 1942;110:577–98.

    Article  Google Scholar 

  99. Gadangi P, Longaker M, Naime D, et al. The anti-inflammatory mechanism of sulfasalazine is related to adenosine release at inflamed sites. J Immunol. 1996;156(5):1937–41.

    CAS  PubMed  Google Scholar 

  100. Neumann VC, Taggart AJ, Le Gallez P, et al. A study to determine the active moiety of sulphasalazine in rheumatoid arthritis. J Rheumatol. 1986;13(2):285–7.

    CAS  PubMed  Google Scholar 

  101. Ferraz MB, Tugwell P, Goldsmith CH, et al. Meta-analysis of sulfasalazine in ankylosing spondylitis. J Rheumatol. 1990;17(11):1482–6.

    CAS  PubMed  Google Scholar 

  102. Taggart AJ, McDermott BJ, Roberts SD. The effect of age and acetylator phenotype on the pharmacokinetics of sulfasalazine in patients with rheumatoid arthritis. Clin Pharmacokinet. 1992;23(4):311–20.

    Article  CAS  PubMed  Google Scholar 

  103. van der Heijde DM, van Riel PL, Nuver-Zwart IH, et al. Sulphasalazine versus hydroxychloroquine in rheumatoid arthritis: 3-year follow-up. Lancet. 1990;335(8688):539.

    Article  PubMed  Google Scholar 

  104. Roskoski R. Janus kinase inhibitors in the treatment of inflammatory and neoplastic diseases. Pharm Res. 2016;111(1):784–803.

    Article  CAS  Google Scholar 

  105. Dowty ME, Lin J, Ryder TF, et al. The pharmacokinetics, metabolism, and clearance mechanisms of tofacitinib, a janus kinase inhibitor, in humans. Drug Metab Dispos. 2014;42(4):759–73.

    Article  CAS  PubMed  Google Scholar 

  106. Charles-Schoeman C, Burmester G, Nash P, et al. Efficacy and safety of tofacitinib following inadequate response to conventional synthetic or biological disease-modifying antirheumatic drugs. Ann Rheum Dis. 2015;75:1293–301.

    Article  CAS  PubMed  Google Scholar 

  107. Ritchlin CT, Krueger JG. New therapies for psoriasis and psoriatic arthritis. Curr Opin Rheumatol. 2016;28:204–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Asahina A, Etoh T, Igarashi A, et al. Oral tofacitinib efficacy, safety and tolerability in Japanese patients with moderate to severe plaque psoriasis and psoriatic arthritis: a randomized, double-blind, phase 3 study. J Dermatol. 2016;43:869–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Keystone EC, Taylor PC, Drescher E, et al. Safety and efficacy of baricitinib at 24 weeks in patients with rheumatoid arthritis who have had an inadequate response to methotrexate. Ann Rheum Dis. 2015;74:333–40.

    Article  CAS  PubMed  Google Scholar 

  110. Genovese MC, Kremer J, Zamani O, et al. Baricitinib in patients with refractory rheumatoid arthritis. N Engl J Med. 2016;374:1243–52.

    Article  CAS  PubMed  Google Scholar 

  111. Genovese MC, van Vollenhoven RF, Pacheco-Tena C, et al. VX-509 (decernotinib), an oral selective JAK-3 inhibitor, in combination with methotrexate in patients with rheumatoid arthritis. Arthritis Rheumatol. 2016;68(1):46–55.

    Article  CAS  PubMed  Google Scholar 

  112. Winthrop KL, Yamanaka H, Valdez H, et al. Herpes zoster and tfacitinib therapy in patients with rheumatoid arthritis. Arthritis Rheum. 2014;66(10):2675–84.

    Article  CAS  Google Scholar 

  113. Curtis JR, Lee EB, Kaplan IV, et al. Tofacitinib, an oral Janus kinase inhibitor: analysis of malignancies across the rheumatoid arthritis clinical development programme. Ann Rheum Dis. 2016;75:831–41.

    Article  CAS  PubMed  Google Scholar 

  114. Champion GD, Graham GG, Ziegler JB. The gold complexes. In: Brooks P, editor. Bailliere’s clinical rheumatology, slow acting anti-rheumatic drugs and iminunosuppressives, vol. 3. London: Bailliere; 1990. p. 491–534.

    Google Scholar 

  115. Handel ML, Watts CKW, deFazio A, et al. Inhibition of AP-1 binding and transcription by gold and selenium involving conserved cysteine residues in Jun and Fos. Proc Natl Acad Sci U S A. 1995;92:4497–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Graham GG, Champion GD, Ziegler JB. The cellular metabolism and effects of gold complexes. Metal Based Drugs. 1994;1:395–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Madeira JM, Gibson DL, Kean WF, et al. The biological activity of auranofin; implications fo novel treatment of dieases. Inflammopharmacology. 2012;20:297–306.

    Article  CAS  PubMed  Google Scholar 

  118. Williams KM, Day RO, Breit SN. Biochemical actions and clinical pharmacology of anti-inflammatory drugs. Adv Drug Res. 1993;24:121–98.

    CAS  Google Scholar 

  119. Wood PL, Khan MA, Moskal JR. Mechanism of action of the disease-modifying anti-arthritic thiol agents D-penicillamine and sodium aurothiomalate: Restoration of cellular free thiols and sequestration of reactive aldehydes. Eur J Pharmacol. 2008;580(1):48–54.

    Article  CAS  PubMed  Google Scholar 

  120. Stone M, Fortin PR, Pacheco-Tena C, et al. Should tetracycline treatment be used more extensively for rheumatoid arthritis? Metaanalysis demonstrates clinical benefit with reduction in disease activity. J Rheumatol. 2003;30(10):2112–22.

    CAS  PubMed  Google Scholar 

  121. Leite LM, Carvalho AGG, Ferreira PL, et al. Anti-inflammatory properties of doxycycline amd minocycline in experimental models: an in vivo and in vitro comparative study. Inflammopharmacology. 2011;19(2):99–110.

    Article  CAS  PubMed  Google Scholar 

  122. Monk E, Shalita A, Siegel DM. Clinical applications of non-antimicrobial tetracyclines in dermatology. Pharmacol Res. 2011;63(2):130–45.

    Article  CAS  PubMed  Google Scholar 

  123. Barnes PJ. Anti-inflammatory actions of glucocorticoids: molecular mechanisms. Clin Sci. 1998;94:557–72.

    Article  CAS  Google Scholar 

  124. Smith MD, Ahern MJ, Roberts-Thompson PJ. Pulse methylprednisolone therapy in rheumatoid arthritis: unproved therapy, unjustified therapy, or effective adjunctive treatment? Ann Rheum Dis. 1990;49:265–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Capell HA, Madhok R, Hunter JA, et al. Lack of radiological and clinical benefit over two years of low dose prednisolone for rheumatoid arthritis: results of a randomised controlled trial. Ann Rheum Dis. 2004;63:797–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Sambrook PN, Jones G. Corticosteroid osteoporosis. Br J Rheumatol. 1995;34:8–12.

    Article  CAS  PubMed  Google Scholar 

  127. Emery P, Breedveld FC, Hall S, et al. Comparison of methotrexate monotherapy with a combination of methotrexate and etanercept in active, early, moderate to severe rheumatoid arthritis (COMET): a randomised, double-blind, parallel treatment trial. Lancet. 2008;372(9636):375–82.

    Article  CAS  PubMed  Google Scholar 

  128. Emery P, Breedveld F, van der Heijde D, et al. Two-year clinical and radiographic results with combination etanercept-methotrexate therapy versus monotherapy in early rheumatoid arthritis: a two-year, double-blind, randomized study. Arthritis Rheum. 2010;62(3):674–82.

    Article  CAS  PubMed  Google Scholar 

  129. Tugwell P, Pincus T, Yocum D, et al. Combination therapy with cyclosporine and methotrexate in severe rheumatoid arthritis. The Methotrexate-Cyclosporine Combination Study Group. N Engl J Med. 1995;333(3):137–41.

    Article  CAS  PubMed  Google Scholar 

  130. Fox RI, Morgan SL, Smith HT, et al. Combined oral cyclosporin and methotrexate therapy in patients with rheumatoid arthritis elevates methotrexate levels and reduces 7-hydroxymethotrexate levels when compared with methotrexate alone. Rheumatology (Oxford). 2003;42(8):989–94.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Garry G. Graham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pile, K.D., Graham, G.G., Mahler, S.M., Day, R.O. (2019). Disease-Modifying Anti-rheumatic Drugs. In: Parnham, M., Nijkamp, F., Rossi, A. (eds) Nijkamp and Parnham's Principles of Immunopharmacology. Springer, Cham. https://doi.org/10.1007/978-3-030-10811-3_34

Download citation

Publish with us

Policies and ethics