Skip to main content
  • 1017 Accesses

Abstract

Cytotoxic immunosuppressive agents have a long-standing important role in pharmacological IMMUNOSUPPRESSION. Azathioprine was among the first immunosuppressive drugs used in organ transplantation. A further development in this field was landmarked by the introduction of ALKYLATING AGENTS (i.e. cyclophosphamide) and ANTIMETABOLITES (i.e. methotrexate and mycophenolic acid) in therapeutic regimens for the prevention of graft rejection (see Chap. 31) and the treatment of AUTOIMMUNE DISEASES (see Chaps. 34 and 35) because of their well-documented lymphocytolytic effect.

Final manuscript submitted on February 26, 2018.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Selected Readings

  • Cattaneo D, Perico N, Remuzzi G. From pharmacokinetics to pharmacogenomics: a new approach to tailor immunosuppressive therapy. Am J Transplant. 2004;4:299–310.

    Article  CAS  PubMed  Google Scholar 

  • Chinen J, Buckley RH. Transplantation immunology: solid organ and bone marrow. J Allergy Clin Immunol. 2010;125(2 Suppl 2):S324–35.

    Article  PubMed  PubMed Central  Google Scholar 

  • Emadi A, Jones RJ, Brodsky RA. Cyclophosphamide and cancer: golden anniversary. Nat Rev Clin Oncol. 2009;6:638–47.

    Article  CAS  PubMed  Google Scholar 

  • Fischereder M, Kretzler M. New immunosuppressive strategies in renal transplant recipients. J Nephrol. 2004;17:9–18.

    CAS  PubMed  Google Scholar 

  • Tedesco Silva H Jr, Pinheiro Machado P, Rosso Felipe C, Medina Pestana JO. Immunotherapy for De Novo renal transplantation: what’s in the pipeline? Drugs. 2006;66:1665–84.

    Article  PubMed  Google Scholar 

  • Wolff D, Steiner B, Hildebrandt G, Edinger M, Holler E. Pharmaceutical and cellular strategies in prophylaxis and treatment of graft-versus-host disease. Curr Pharm Design. 2009;15:1974–97.

    Article  CAS  Google Scholar 

References

  1. Knight SR, Russell NK, Barcena L, Morris PJ. Mycophenolate mofetil decreases acute rejection and may improve graft survival in renal transplant recipients when compared with azathioprine: a systematic review. Transplantation. 2009;87:785–94.

    Article  CAS  PubMed  Google Scholar 

  2. Barshes NR, Goodpastor SE, Goss JA. Pharmacologic immunosuppression. Front Biosci. 2004;9:411–20.

    Article  CAS  PubMed  Google Scholar 

  3. Germani G, Pleguezuelo M, Villamil F, Vaghjiani S, Tsochatzis E, Andreana L, Burroughs AK. Azathioprine in liver transplantation: a reevaluation of its use and a comparison with mycophenolate mofetil. Am J Transplant. 2009;9:1725–31.

    Article  CAS  PubMed  Google Scholar 

  4. Mueller XM. Drug immunosuppression therapy for adult heart transplantation. Part 1: Immune response to allograft and mechanism of action of immunosuppressants. Ann Thorac Surg. 2004;77:354–62.

    Article  PubMed  Google Scholar 

  5. Sauer H, Hantke U, Wilmanns W. Azathioprine lymphocytotoxicity. Potentially lethal damage by its imidazole derivatives. Arzneimittelforschung. 1988;38:820–84.

    CAS  PubMed  Google Scholar 

  6. Adam L, Phulukdaree A, Soma P. Effective long-term solution to therapeutic remission in Inflammatory Bowel Disease: role of azathioprine. Biomed Pharmacother. 2018;100:8–14.

    Article  CAS  PubMed  Google Scholar 

  7. El-Azhary RA. Azathioprine: current status and future considerations. Int J Dermatol. 2003;42:335–41.

    Article  CAS  PubMed  Google Scholar 

  8. Gold R, Schneider-Gold C. Current and future standards in treatment of myasthenia gravis. Neurotherapeutics. 2008;5:535–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tsuchiya A, Aomori T, Sakamoto M, Takeuchi A, Suzuki S, Jibiki A, Otsuka N, Ishioka E, Kaneko Y, Takeuchi T, Nakamura T. Effect of genetic polymorphisms of azathioprine-metabolizing enzymes on response to rheumatoid arthritis treatment. Pharmazie. 2017;72:22–8.

    CAS  PubMed  Google Scholar 

  10. de Jong DJ, Goullet M, Naber TH. Side effects of azathioprine in patients with Crohn’s disease. Eur J Gastroenterol Hepatol. 2004;16:207–12.

    Article  PubMed  Google Scholar 

  11. Marcen R, Pascual J, Tato AM, Teruel JL, Villafruela JJ, Fernandez M, Tenorio M, Burgos FJ, Ortuno J. Influence of immunosuppression on the prevalence of cancer after kidney transplantation. Transplant Proc. 2003;35:1714–6.

    Article  CAS  PubMed  Google Scholar 

  12. Hengstler JG, Hengst A, Fuchs J, Tanner B, Pohl J, Oesch F. Induction of DNA crosslinks and DNA strand lesions by cyclophosphamide after activation by cytochrome P450 2B1. Mutat Res. 1997;373:215–23.

    Article  CAS  PubMed  Google Scholar 

  13. Allison AC. Immunosuppressive drugs: the first 50 years and a glance forward. Immunopharmacology. 2000;47:63–83.

    Article  CAS  PubMed  Google Scholar 

  14. Pette M, Gold R, Pette DF, Hartung HP, Toyka KV. Mafosfamide induces DNA fragmentation and APOPTOSIS in human T-lymphocytes. A possible mechanism of its immunosuppressive action. Immunopharmacology. 1995;30:59–69.

    Article  CAS  PubMed  Google Scholar 

  15. Sulkowska M, Sulkowski S, Skrzydlewska E, Farbiszewski R. Cyclophosphamide-induced generation of reactive oxygen species. Comparison with morphological changes in type II alveolar epithelial cells and lung capillaries. Exp Toxicol Pathol. 1998;50:209–20.

    Article  CAS  PubMed  Google Scholar 

  16. Alan V, Boddy AV, Yule SM. Metabolism and pharmacokinetics of oxazaphosphorines. Clin Pharmacokinet. 2000;38:291–304.

    Article  Google Scholar 

  17. Rinaldi L, Perini P, Calabrese M, Gallo P. Cyclophosphamide as second-line therapy in multiple sclerosis: benefits and risks. Neurol Sci. 2009;30(Suppl 2):S171–3.

    Article  PubMed  Google Scholar 

  18. Esdaile JM. How to manage patients with lupus nephritis. Best Pract Res Clin Rheumatol. 2002;16:195–210.

    Article  PubMed  Google Scholar 

  19. Mosca M, Ruiz-Irastorza G, Khamashta MA, Hughes GRV. Treatment of systemic lupus erythematosus. Int Immunopharmacol. 2001;1:1065–75.

    Article  CAS  PubMed  Google Scholar 

  20. Langford CA. Management of systemic vasculitis. Best Pract Res Clin Rheumatol. 2001;15:281–97.

    Article  CAS  PubMed  Google Scholar 

  21. Huang Z, Roy P, Waxman DJ. Role of human liver microsomal CYP3A4 and CYP2B6 in catalyzing N-dechloroethylation of cyclophosphamide and ifosfamide. Biochem Pharmacol. 2000;59:961–72.

    Article  CAS  PubMed  Google Scholar 

  22. Jinno H, Tanaka-Kagawa T, Ohno A, Makino Y, Matsushima E, Hanioka N, Ando M. Functional characterization of cytochrome P450 2B6 allelic variants. Drug Metab Dispos. 2003;31:398–403.

    Article  CAS  PubMed  Google Scholar 

  23. Giorgianni F, Bridson PK, Sorrentino BP, Pohl J, Blakley RL. Inactivation of aldophosphamide by human aldehyde dehydrogenase isozyme 3. Biochem Pharmacol. 2000;60:325–38.

    Article  CAS  PubMed  Google Scholar 

  24. Low SK, Kiyotani K, Mushiroda T, Daigo Y, Nakamura Y, Zembutsu H. Association study of genetic polymorphism in ABCC4 with cyclophosphamide-induced adverse drug reactions in breast cancer patients. J Hum Genet. 2009;54:564–71.

    Article  CAS  PubMed  Google Scholar 

  25. Serra M, Reverter-Branchat G, Maurici D, Benini S, Shen JN, Chano T, Hattinger CM, Manara MC, Pasello M, Scotlandi K, Picci P. Analysis of dihydrofolate reductase and reduced folate carrier gene status in relation to methotrexate resistance in osteosarcoma cells. Ann Oncol. 2004;15:151–60.

    Article  CAS  PubMed  Google Scholar 

  26. Fraser AG. Methotrexate: first-line or second-line immunomodulator? Eur J Gastroenterol Hepatol. 2003;15:225–31.

    Article  CAS  PubMed  Google Scholar 

  27. Grim J, ChlĂ¡dek J, MartĂ­nkovĂ¡ J. Pharmacokinetics and pharmacodynamics of methotrexate in non-neoplastic diseases. Clin Pharmacokinet. 2003;42:139–51.

    Article  CAS  PubMed  Google Scholar 

  28. Zhao R, Goldman ID. Resistance to antifolates. Oncogene. 2003;22:7431–57.

    Article  CAS  PubMed  Google Scholar 

  29. van Aubel RA, Smeets PH, Peters JG, Bindels RJ, Russel FG. The MRP4/ABCC4 gene encodes a novel apical organic anion transporter in human kidney proximal tubules: putative efflux pump for urinary cAMP and cGMP. J Am Soc Nephrol. 2002;13:595–603.

    PubMed  Google Scholar 

  30. Warren RB, Chalmers RJ, Griffiths CE, Menter A. Methotrexate for psoriasis in the era of biological therapy. Clin Exp Dermatol. 2008;33:551–4.

    Article  CAS  PubMed  Google Scholar 

  31. Smolen JS, Landewé R, Breedveld FC, Dougados M, Emery P, Gaujoux-Viala C, Gorter S, Knevel R, Nam J, Schoels M, Aletaha D, Buch M, Gossec L, Huizinga T, Bijlsma JW, Burmester G, Combe B, Cutolo M, Gabay C, Gomez-Reino J, Kouloumas M, Kvien TK, Martin-Mola E, McInnes I, Pavelka K, van Riel P, Scholte M, Scott DL, Sokka T, Valesini G, van Vollenhoven R, Winthrop KL, Wong J, Zink A, van der Heijde D. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs. Ann Rheum Dis. 2010;69:964–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kahn P. Juvenile idiopathic arthritis--current and future therapies. Bull NYU Hosp Jt Dis. 2009;67:291–302.

    PubMed  Google Scholar 

  33. Berkani LM, Rahal F, Allam I, Mouaki Benani S, Laadjouz A, Djidjik R. Association of MTHFR C677T and A1298C gene polymorphisms with methotrexate efficiency and toxicity in Algerian rheumatoid arthritis patients. Heliyon. 2017;3(11):e00467.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Shao W, Yuan Y, Li Y. Association between MTHFR C677T polymorphism and methotrexate treatment outcome in rheumatoid arthritis patients: a systematic review and meta-analysis. Genet Test Mol Biomarkers. 2017;21:275–85.

    Article  CAS  PubMed  Google Scholar 

  35. Lee YH, Song GG. Associations between the C677T and A1298C polymorphisms of MTHFR and the efficacy and toxicity of methotrexate in rheumatoid arthritis: a meta-analysis. Clin Drug Investig. 2010;30:101–8.

    Article  CAS  PubMed  Google Scholar 

  36. Chen Y, Zou K, Sun J, Yang Y, Liu G. Are gene polymorphisms related to treatment outcomes of methotrexate in patients with rheumatoid arthritis? A systematic review and meta-analysis. Pharmacogenomics. 2017;18:175–95.

    Article  PubMed  CAS  Google Scholar 

  37. Borchers AT, Keen CL, Cheema GS, Gershwin ME. The use of methotrexate in rheumatoid arthritis. Semin Arthritis Rheum. 2004;34:465–83.

    Article  CAS  PubMed  Google Scholar 

  38. Ruperto N, Murray KJ, Gerloni V, Wulffraat N, de Oliveira SK, Falcini F, Dolezalova P, Alessio M, Burgos-Vargas R, Corona F, Vesely R, Foster H, Davidson J, Zulian F, Asplin L, Baildam E, Consuegra JG, Ozdogan H, Saurenmann R, Joos R, Pistorio A, Woo P, Martini A. A randomized trial of parenteral methotrexate comparing an intermediate dose with a higher dose in children with juvenile idiopathic arthritis who failed to respond to standard doses of methotrexate. Arthritis Rheum. 2004;50:2191–201.

    Article  CAS  PubMed  Google Scholar 

  39. Smak Gregoor PJ, van Gelder T, Weimar W. Mycophenolate mofetil, Cellcept, a new immunosuppressive drug with great potential in internal medicine. Neth J Med. 2000;57:233–46.

    Article  CAS  PubMed  Google Scholar 

  40. Kaul A, Gordon C, Crow MK, Touma Z, Urowitz MB, van Vollenhoven R, Ruiz-Irastorza G, Hughes G. Systemic lupus erythematosus. Nat Rev Dis Primers. 2016;2:16039. https://doi.org/10.1038/nrdp.2016.39.

    Article  PubMed  Google Scholar 

  41. Gabardi S, Tran JL, Clarkson MR. Enteric-coated mycophenolate sodium. Ann Pharmacother. 2003;37:1685–93.

    Article  CAS  PubMed  Google Scholar 

  42. Srinivas TR, Kaplan B, Meier-Kriesche HU. Mycophenolate mofetil in solid-organ transplantation. Expert Opin Pharmacother. 2003;4:2325–45.

    Article  CAS  PubMed  Google Scholar 

  43. Villarroel MC, Hidalgo M, Jimeno A. Mycophenolate mofetil: an update. Drugs Today. 2009;45:521–32.

    CAS  PubMed  Google Scholar 

  44. Shui H, Gao P, Si X, Ding G. Mycophenolic acid inhibits albumin-induced MCP-1 expression in renal tubular epithelial cells through the p38 MAPK pathway. Mol Biol Rep. 2010;37:1749–54.

    Article  CAS  PubMed  Google Scholar 

  45. Lui SL, Chan LY, Zhang XH, Zhu W, Chan TM, Fung PC, Lai KN. Effect of mycophenolate mofetil on nitric oxide production and inducible nitric oxide synthase gene expression during renal ischaemia-reperfusion injury. Nephrol Dial Transplant. 2001;16:1577–82.

    Article  CAS  PubMed  Google Scholar 

  46. Kelly P, Kahan BD. Review: metabolism of immunosuppressant drugs. Curr Drug Metab. 2002;3:275–87.

    Article  CAS  PubMed  Google Scholar 

  47. Del Tacca M. Prospects for personalized immunosuppression: pharmacologic tools – a review. Transplant Proc. 2004;36:687–9.

    Article  PubMed  CAS  Google Scholar 

  48. Holt DW. Monitoring mycophenolic acid. Ann Clin Biochem. 2002;39:173–83.

    Article  CAS  PubMed  Google Scholar 

  49. Hale MD, Nicholls AJ, Bullingham RE, Hene R, Hoitsma A, Squifflet JP, Weimar W, Vanrenterghem Y, Van de Woude FJ, Verpooten GA. The pharmacokinetic-pharmacodynamic relationship for mycophenolate mofetil in renal transplantation. Clin Pharmacol Ther. 1998;64:672–83.

    Article  CAS  PubMed  Google Scholar 

  50. Mackenzie PI. Identification of uridine diphosphate glucuronosyl-transferases involved in the metabolism and clearance of mycophenolic acid. Ther Drug Monit. 2000;22:10–3.

    Article  CAS  PubMed  Google Scholar 

  51. Mele TS, Halloran PF. The use of mycophenolate mofetil in transplant recipients. Immunopharmacology. 2000;47:215–45.

    Article  CAS  PubMed  Google Scholar 

  52. Giessing M, Fuller TF, Tuellmann M, Slowinski T, Budde K, Liefeldt L. Steroid- and calcineurin inhibitor free immunosuppression in kidney transplantation: state of the art and future developments. World J Urol. 2007;25:325–32.

    Article  CAS  PubMed  Google Scholar 

  53. Koukoulaki M, Goumenos DS. The accumulated experience with the use of mycophenolate mofetil in primary glomerulonephritis. Expert Opin Investig Drugs. 2010;19:673–87.

    Article  CAS  PubMed  Google Scholar 

  54. Groot N, de Graeff N, Marks SD, Brogan P, Avcin T, Bader-Meunier B, Dolezalova P, Feldman BM, Kone-Paut I, Lahdenne P, McCann L, Özen S, Pilkington CA, Ravelli A, Royen-Kerkhof AV, Uziel Y, Vastert BJ, Wulffraat NM, Beresford MW, Kamphuis S. European evidence-based recommendations for the diagnosis and treatment of childhood-onset lupus nephritis: the SHARE initiative. Ann Rheum Dis. 2017;76:1965–73.

    Article  CAS  PubMed  Google Scholar 

  55. Staatz CE, Tett SE. Pharmacology and toxicology of mycophenolate in organ transplant recipients: an update. Arch Toxicol. 2014;88:1351–89.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Grösch, S., Bocci, G., Di Paolo, A., Danesi, R. (2019). Cytotoxic Drugs. In: Parnham, M., Nijkamp, F., Rossi, A. (eds) Nijkamp and Parnham's Principles of Immunopharmacology. Springer, Cham. https://doi.org/10.1007/978-3-030-10811-3_30

Download citation

Publish with us

Policies and ethics