Skip to main content

Mild Plant and Dietary Immunomodulators

  • Chapter
  • First Online:
Nijkamp and Parnham's Principles of Immunopharmacology

Abstract

Plants and minerals have been used since ancient times for the treatment of many ailments and diseases. Most were used for mystical reasons and others relied on the “doctrine of signatures”, which stated that the shape of the plant reflected its potential medicinal use. The root of the mandrake or ginseng, for instance, is shaped like that of the human body and has been used as a general tonic for a variety of illnesses [1]. It is claimed by herbalists to have immunostimulant properties. Siberian ginseng or Taiga root (Eleutherococcus senticosus) is also used as a tonic and has been reported to exhibit immunostimulatory properties. The pharmacological bases of these actions are unclear, so these plant medicines cannot be considered unequivocally as immunostimulants.

Final manuscript submitted on December 09, 2016.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Selected Readings

  • Barrett B. Medicinal properties of Echinacea: a critical review. Phytomedicine. 2003;10:66–86.

    Article  CAS  PubMed  Google Scholar 

  • Firuzi O, Miri R, Tavakkoli M, Saso L. Antioxidant therapy: current status and future prospects. Curr Med Chem. 2011;18(25):3871–88.

    Article  CAS  PubMed  Google Scholar 

  • Garcıa-Lafuente A, Guillamon E, Villares A, Rostagno MA, Martınez JA. Flavonoids as anti-inflammatory agents: implications in cancer and cardiovascular disease. Inflamm Res. 2009;58:537–52.

    Article  PubMed  CAS  Google Scholar 

  • Kotsirilos V, Vitetta L, Sali A. A guide to evidence-based integrative and complementary medicine. Australia: Churchill Livingstone - Elsevier; 2011.

    Google Scholar 

  • Maggini S, Wintergerst ES, Beveridge S, Hornig DH. Selected vitamins and trace elements support immune function by strengthening epithelial barriers and cellular and humoral immune responses. Br J Nutr. 2007;98(Suppl 1):S29–35.

    Article  CAS  PubMed  Google Scholar 

  • Roxas M, Jurenka J. Colds and influenza: a review of diagnosis and conventional, botanical, and nutritional considerations. Altern Med Rev. 2007;12:25–48.

    PubMed  Google Scholar 

  • Saso L, Firuzi O. Pharmacological applications of antioxidants: lights and shadows. Curr Drug Targets. 2014;15(13):1177–99.

    Article  CAS  PubMed  Google Scholar 

Important Websites

References

  1. Leake CD. An historical account of pharmacology to the twentieth century. Springfield, IL: Charles C. Thomas; 1975.

    Google Scholar 

  2. Bast A. Ten misconceptions about antioxidants. Trends Pharmacol Sci. 2013;34(8):430–6.

    Article  CAS  PubMed  Google Scholar 

  3. Samadi AK, Bilsland A, Georgakilas AG, Amedei A, Amin A, Bishayee A, et al. A multi-targeted approach to suppress tumor-promoting inflammation. Semin Cancer Biol. 2015;35(Suppl):S151–84.

    Article  PubMed  CAS  Google Scholar 

  4. Foster S. Echinacea. Nature’s immune enhancer. Rochester: Healing Arts Press; 1991.

    Google Scholar 

  5. Gilroy CM, Steiner JF, Byers T, Shapiro H, Georgian W. Echinacea and truth in labeling. Arch Intern Med. 2003;163(6):699.

    Article  PubMed  Google Scholar 

  6. Bauer R, Wagner H. Echinacea. Handbuch fur Ärzte, Apotheker und andere Naturwissenschaftler. Stuttgart: Wissenschaftliche; 1990.

    Google Scholar 

  7. Woelkart K, Bauer R. The role of alkamides as an active principle of echinacea. Planta Med. 2007;73(7):615–23.

    Article  CAS  PubMed  Google Scholar 

  8. Zhai Z, Liu Y, Wu L, Senchina DS, Wurtele ES, Murphy PA, et al. Enhancement of innate and adaptive immune functions by multiple Echinacea species. J Med Food. 2007;10(3):423–34.

    Article  CAS  PubMed  Google Scholar 

  9. Dong G-C, Chuang P-H, Chang K, Jan P, Hwang P-I, Wu H-B, et al. Blocking effect of an immuno-suppressive agent, cynarin, on CD28 of T-cell receptor. Pharm Res. 2009;26(2):375–81.

    Article  CAS  PubMed  Google Scholar 

  10. Jager H, Meinel L, Dietz B, Lapke C, Bauer R, Merkle HP, et al. Transport of alkamides from Echinacea species through Caco-2 monolayers. Planta Med. 2002;68(5):469–71.

    Article  CAS  PubMed  Google Scholar 

  11. Guiotto P, Woelkart K, Grabnar I, Voinovich D, Perissutti B, Invernizzi S, et al. Pharmacokinetics and immunomodulatory effects of phytotherapeutic lozenges (bonbons) with Echinacea purpurea extract. Phytomedicine. 2008;15(8):547–54.

    Article  CAS  PubMed  Google Scholar 

  12. Dall’Acqua S, Perissutti B, Grabnar I, Farra R, Comar M, Agostinis C, et al. Pharmacokinetics and immunomodulatory effect of lipophilic Echinacea extract formulated in softgel capsules. Eur J Pharm Biopharm. 2015;97(Pt A):8–14.

    Article  PubMed  CAS  Google Scholar 

  13. Parnham MJ. Benefit-risk assessment of the squeezed sap of the purple coneflower (Echinacea purpurea) for long-term oral immunostimulation. Phytomedicine. 1996;3(1):95–102.

    Article  CAS  PubMed  Google Scholar 

  14. Hoheisel O, Sandberg M, Bertram S, Bulitta M, Schafer M. Echinagard® treatment shortens the course of the common cold: a double-blind, placebo-controlled clinical trial. Eur J Clin Res. 1997;9:261–8.

    Google Scholar 

  15. Roxas M, Jurenka J. Colds and influenza: a review of diagnosis and conventional, botanical, and nutritional considerations. Altern Med Rev. 2007;12(1):25–48.

    PubMed  Google Scholar 

  16. Karsch-Völk M, Barrett B, Kiefer D, Bauer R, Ardjomand-Woelkart K, Linde K. Echinacea for preventing and treating the common cold. Cochrane Database Syst Rev. 2014;(2):CD000530.

    Google Scholar 

  17. Brendler T, van Wyk B-E. A historical, scientific and commercial perspective on the medicinal use of Pelargonium sidoides (Geraniaceae). J Ethnopharmacol. 2008;119(3):420–33.

    Article  CAS  PubMed  Google Scholar 

  18. Kolodziej H. Fascinating metabolic pools of Pelargonium sidoides and Pelargonium reniforme, traditional and phytomedicinal sources of the herbal medicine Umckaloabo. Phytomedicine. 2007;14(Suppl 6):9–17.

    Article  CAS  PubMed  Google Scholar 

  19. Kolodziej H, Kayser O, Radtke OA, Kiderlen AF, Koch E. Pharmacological profile of extracts of Pelargonium sidoides and their constituents. Phytomedicine. 2003;10(Suppl 4):18–24.

    Article  CAS  PubMed  Google Scholar 

  20. Kolodziej H, Kiderlen AF. In vitro evaluation of antibacterial and immunomodulatory activities of Pelargonium reniforme, Pelargonium sidoides and the related herbal drug preparation EPs 7630. Phytomedicine. 2007;14(Suppl 6):18–26.

    Article  CAS  PubMed  Google Scholar 

  21. Thäle C, Kiderlen A, Kolodziej H. Anti-infective mode of action of EPs 7630 at the molecular level. Planta Med. 2008;74(6):675–81.

    Article  PubMed  CAS  Google Scholar 

  22. Conrad A, Hansmann C, Engels I, Daschner FD, Frank U. Extract of Pelargonium sidoides (EPs 7630) improves phagocytosis, oxidative burst, and intracellular killing of human peripheral blood phagocytes in vitro. Phytomedicine. 2007;14(Suppl 6):46–51.

    Article  PubMed  Google Scholar 

  23. Dickersin K, Li T. Surgery for nonarteritic anterior ischemic optic neuropathy. Cochrane Database Syst Rev. 2015;(3):CD001538.

    Google Scholar 

  24. Koch E, Biber A. Treatment of rats with the Pelargonium sidoides extract EPs 7630 has no effect on blood coagulation parameters or on the pharmacokinetics of warfarin. Phytomedicine. 2007;14(Suppl 6):40–5.

    Article  CAS  PubMed  Google Scholar 

  25. Holtskog R, Sandvig K, Olsnes S. Characterization of a toxic lectin in Iscador, a mistletoe preparation with alleged cancerostatic properties. Oncology. 1988;45(3):172–9.

    Article  CAS  PubMed  Google Scholar 

  26. Eck J, Langer M, Möckel B, Witthohn K, Zinke H, Lentzen H. Characterization of recombinant and plant-derived mistletoe lectin and their B-chains. Eur J Biochem. 1999;265(2):788–97.

    Article  CAS  PubMed  Google Scholar 

  27. Joller PW, Menrad JM, Schwarz T, Pfüller U, Parnham MJ, Weyhenmeyer R, et al. Stimulation of cytokine production via a special standardized mistletoe preparation in an in vitro human skin bioassay. Arzneimittelforschung. 1996;46(6):649–53.

    CAS  PubMed  Google Scholar 

  28. Beuth J, Ko HL, Gabius HJ, Burrichter H, Oette K, Pulverer G. Behavior of lymphocyte subsets and expression of activation markers in response to immunotherapy with galactoside-specific lectin from mistletoe in breast cancer patients. Clin Investig. 1992;70(8):658–61.

    Article  CAS  PubMed  Google Scholar 

  29. Kienle GS, Glockmann A, Schink M, Kiene H. Viscum album L. extracts in breast and gynaecological cancers: a systematic review of clinical and preclinical research. J Exp Clin Cancer Res. 2009;28:79.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Zwierzina H, Bergmann L, Fiebig H, Aamdal S, Schöffski P, Witthohn K, et al. The preclinical and clinical activity of aviscumine: a potential anticancer drug. Eur J Cancer. 2011;47(10):1450–7.

    Article  CAS  PubMed  Google Scholar 

  31. Walzel H, Jonas L, Rosin T, Brock J. Relationship between internalization kinetics and cytotoxicity of mistletoe lectin I to L1210 leukaemia cells. Folia Biol (Praha). 1990;36(3–4):181–8.

    CAS  Google Scholar 

  32. Mulsow K, Enzlein T, Delebinski C, Jaeger S, Seifert G, Melzig MF. Impact of mistletoe triterpene acids on the uptake of mistletoe lectin by cultured tumor cells. PLoS One. 2016;11(4):e0153825.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Bergmann L, Aamdal S, Marreaud S, Lacombe D, Herold M, Yamaguchi T, et al. Phase I trial of r viscumin (INN: aviscumine) given subcutaneously in patients with advanced cancer: a study of the European Organisation for Research and Treatment of Cancer (EORTC protocol number 13001). Eur J Cancer. 2008;44(12):1657–62.

    Article  CAS  PubMed  Google Scholar 

  34. Horneber MA, Bueschel G, Huber R, Linde K, Rostock M. Mistletoe therapy in oncology. Cochrane Database Syst Rev. 2008;(2):CD003297.

    Google Scholar 

  35. Mistletoe Extracts (PDQ®): Complementary and alternative medicine - Patient Information [NCI]-Questions and Answers About Mistletoe. 2016. http://www.webmd.com/cancer/tc/mistletoe-extracts-pdq-complementary-and-alternative-medicine%2D%2D-patient-information-nci-questions-and-answers-about-mistletoe.

  36. Habeck M. Mistletoe compound enters clinical trials. Drug Discov Today. 2003;8(2):52–3.

    Article  PubMed  Google Scholar 

  37. Sandstead HH. Understanding zinc: recent observations and interpretations. J Lab Clin Med. 1994;124(3):322–7.

    CAS  PubMed  Google Scholar 

  38. Institute of Medicine, Food and Nutrition Board. Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. Washington, DC: National Academies Press; 2001.

    Google Scholar 

  39. Shankar AH, Prasad AS. Zinc and immune function: the biological basis of altered resistance to infection. Am J Clin Nutr. 1998;68(2 Suppl):447S–63S.

    Article  CAS  PubMed  Google Scholar 

  40. Reinhold D, Ansorge S, Grüngreiff K. Immunobiology of zinc and zinc therapy. Immunol Today. 1999;20(2):102–3.

    Article  CAS  PubMed  Google Scholar 

  41. Lin RS, Rodriguez C, Veillette A, Lodish HF. Zinc is essential for binding of p56(lck) to CD4 and CD8alpha. J Biol Chem. 1998;273(49):32878–82.

    Article  CAS  PubMed  Google Scholar 

  42. Black RE. Therapeutic and preventive effects of zinc on serious childhood infectious diseases in developing countries. Am J Clin Nutr. 1998;68(2 Suppl):476S–9S.

    Article  CAS  PubMed  Google Scholar 

  43. Mocchegiani E, Verbanac D, Santarelli L, Tibaldi A, Muzzioli M, Radosevic-Stasic B, et al. Zinc and metallothioneins on cellular immune effectiveness during liver regeneration in young and old mice. Life Sci. 1997;61(12):1125–45.

    Article  CAS  PubMed  Google Scholar 

  44. Mocchegiani E, Muzzioli M, Cipriano C, Giacconi R. Zinc, T-cell pathways, aging: role of metallothioneins. Mech Ageing Dev. 1998;106(1–2):183–204.

    Article  CAS  PubMed  Google Scholar 

  45. Sandstead HH. Requirements and toxicity of essential trace elements, illustrated by zinc and copper. Am J Clin Nutr. 1995;61(3 Suppl):621S–4S.

    Article  CAS  PubMed  Google Scholar 

  46. Sharif R, Thomas P, Zalewski P, Fenech M. Zinc deficiency or excess within the physiological range increases genome instability and cytotoxicity, respectively, in human oral keratinocyte cells. Genes Nutr. 2012;7(2):139–54.

    Article  CAS  PubMed  Google Scholar 

  47. Haase H, Rink L. The immune system and the impact of zinc during aging. Immun Ageing. 2009;6:9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Mocchegiani E, Giacconi R, Cipriano C, Malavolta M. NK and NKT cells in aging and longevity: role of zinc and metallothioneins. J Clin Immunol. 2009;29(4):416–25.

    Article  CAS  PubMed  Google Scholar 

  49. Mocchegiani E, Costarelli L, Giacconi R, Malavolta M, Basso A, Piacenza F, et al. Micronutrient-gene interactions related to inflammatory/immune response and antioxidant activity in ageing and inflammation. A systematic review. Mech Ageing Dev. 2014;136–137:29–49.

    Article  PubMed  CAS  Google Scholar 

  50. Hooper PL, Visconti L, Garry PJ, Johnson GE. Zinc lowers high-density lipoprotein-cholesterol levels. JAMA. 1980;244(17):1960–1.

    Article  CAS  PubMed  Google Scholar 

  51. Reeves MA, Hoffmann PR. The human selenoproteome: recent insights into functions and regulation. Cell Mol Life Sci. 2009;66(15):2457–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Brown KM, Arthur JR. Selenium, selenoproteins and human health: a review. Public Health Nutr. 2001;4(2B):593–9.

    Article  CAS  PubMed  Google Scholar 

  53. Finch JM, Turner RJ. Effects of selenium and vitamin E on the immune responses of domestic animals. Res Vet Sci. 1996;60(2):97–106.

    Article  CAS  PubMed  Google Scholar 

  54. Bosschaerts T, Guilliams M, Noel W, Hérin M, Burk RF, Hill KE, et al. Alternatively activated myeloid cells limit pathogenicity associated with African trypanosomiasis through the IL-10 inducible gene selenoprotein P. J Immunol. 2008;180(9):6168–75.

    Article  CAS  PubMed  Google Scholar 

  55. Barrett CW, Short SP, Williams CS. Selenoproteins and oxidative stress-induced inflammatory tumorigenesis in the gut. Cell Mol Life Sci. 2017;74(4):607–16. http://www.ncbi.nlm.nih.gov/pubmed/27563706

    Article  CAS  PubMed  Google Scholar 

  56. Urban T, Jarstrand C. Selenium effects on human neutrophilic granulocyte function in vitro. Immunopharmacology. 1986;12(2):167–72.

    Article  CAS  PubMed  Google Scholar 

  57. Reinhold U, Pawelec G, Enczmann J, Wernet P. Class-specific effects of selenium on PWM-driven human antibody synthesis in vitro. Biol Trace Elem Res. 1989;20(1–2):45–58.

    Article  CAS  PubMed  Google Scholar 

  58. Bonomini M, Forster S, De Risio F, Rychly J, Nebe B, Manfrini V, et al. Effects of selenium supplementation on immune parameters in chronic uraemic patients on haemodialysis. Nephrol Dial Transplant. 1995;10(9):1654–61.

    CAS  PubMed  Google Scholar 

  59. Broome CS, McArdle F, Kyle JAM, Andrews F, Lowe NM, Hart CA, et al. An increase in selenium intake improves immune function and poliovirus handling in adults with marginal selenium status. Am J Clin Nutr. 2004;80(1):154–62.

    Article  CAS  PubMed  Google Scholar 

  60. Leist M, Maurer S, Schultz M, Elsner A, Gawlik D, Brigelius-Flohé R. Cytoprotection against lipid hydroperoxides correlates with increased glutathione peroxidase activities, but not selenium uptake from different selenocompounds. Biol Trace Elem Res. 1999;68(2):159–74.

    Article  CAS  PubMed  Google Scholar 

  61. Suzuki KT, Ishiwata K, Ogra Y. Incorporation of selenium into selenoprotein P and extracellular glutathione peroxidase: HPLC-ICPMS data with enriched selenite. Analyst. 1999;124(12):1749–53.

    Article  CAS  PubMed  Google Scholar 

  62. Bügel S, Larsen EH, Sloth JJ, Flytlie K, Overvad K, Steenberg LC, et al. Absorption, excretion, and retention of selenium from a high selenium yeast in men with a high intake of selenium. Food Nutr Res 2008;52. https://doi.org/10.3402/fnr.v52i0.1642

    Article  Google Scholar 

  63. Hoffmann PR, Berry MJ. The influence of selenium on immune responses. Mol Nutr Food Res. 2008;52(11):1273–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Peretz A, Nève J, Desmedt J, Duchateau J, Dramaix M, Famaey JP. Lymphocyte response is enhanced by supplementation of elderly subjects with selenium-enriched yeast. Am J Clin Nutr. 1991;53(5):1323–8.

    Article  CAS  PubMed  Google Scholar 

  65. Bendich A. Antioxidant vitamins and their functions in immune responses. Adv Exp Med Biol. 1990;262:35–55.

    Article  CAS  PubMed  Google Scholar 

  66. Basu TK. Vitamins in human health and disease. Wallingford: CAB International; 1996.

    Google Scholar 

  67. Schwager J, Schulze J. Modulation of interleukin production by ascorbic acid. Vet Immunol Immunopathol. 1998;64(1):45–57.

    Article  CAS  PubMed  Google Scholar 

  68. Campbell JD, Cole M, Bunditrutavorn B, Vella AT. Ascorbic acid is a potent inhibitor of various forms of T cell apoptosis. Cell Immunol. 1999;194(1):1–5.

    Article  CAS  PubMed  Google Scholar 

  69. Nualart FJ, Rivas CI, Montecinos VP, Godoy AS, Guaiquil VH, Golde DW, et al. Recycling of vitamin C by a bystander effect. J Biol Chem. 2003;278(12):10128–33.

    Article  CAS  PubMed  Google Scholar 

  70. Maggini S, Wintergerst ES, Beveridge S, Hornig DH. Selected vitamins and trace elements support immune function by strengthening epithelial barriers and cellular and humoral immune responses. Br J Nutr. 2007;98(Suppl 1):S29–35.

    Article  CAS  PubMed  Google Scholar 

  71. Servili M, Esposto S, Fabiani R, Urbani S, Taticchi A, Mariucci F, et al. Phenolic compounds in olive oil: antioxidant, health and organoleptic activities according to their chemical structure. Inflammopharmacology. 2009;17(2):76–84.

    Article  CAS  PubMed  Google Scholar 

  72. Wang Y, Huang DS, Eskelson CD, Watson RR. Long-term dietary vitamin E retards development of retrovirus-induced disregulation in cytokine production. Clin Immunol Immunopathol. 1994;72(1):70–5.

    Article  CAS  PubMed  Google Scholar 

  73. Kirmizis D, Chatzidimitriou D. Antiatherogenic effects of vitamin E: the search for the Holy Grail. Vasc Health Risk Manag. 2009;5:767–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Boxer LA, Oliver JM, Spielberg SP, Allen JM, Schulman JD. Protection of granulocytes by vitamin E in glutathione synthetase deficiency. N Engl J Med. 1979;301(17):901–5.

    Article  CAS  PubMed  Google Scholar 

  75. Meydani SN, Meydani M, Blumberg JB, Leka LS, Siber G, Loszewski R, et al. Vitamin E supplementation and in vivo immune response in healthy elderly subjects. A randomized controlled trial. JAMA. 1997;277(17):1380–6.

    Article  CAS  PubMed  Google Scholar 

  76. Meydani M. Nutrition interventions in aging and age-associated disease. Ann N Y Acad Sci. 2001;928:226–35.

    Article  CAS  PubMed  Google Scholar 

  77. Prasad JS. Effect of vitamin E supplementation on leukocyte function. Am J Clin Nutr. 1980;33(3):606–8.

    Article  CAS  PubMed  Google Scholar 

  78. Stepanić V, Kujundžić RN, Trošelj KG. Epigenetics and epigenomics. In: Payne CJ, editor. InTech; 2014.

    Google Scholar 

  79. Walle T. Bioavailability of resveratrol. Ann N Y Acad Sci. 2011;1215:9–15.

    Article  CAS  PubMed  Google Scholar 

  80. Rastmanesh R. High polyphenol, low probiotic diet for weight loss because of intestinal microbiota interaction. Chem Biol Interact. 2011;189(1–2):1–8.

    Article  CAS  PubMed  Google Scholar 

  81. Wang S, Moustaid-Moussa N, Chen L, Mo H, Shastri A, Su R, et al. Novel insights of dietary polyphenols and obesity. J Nutr Biochem. 2014;25(1):1–18.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Sears B, Ricordi C. Anti-inflammatory nutrition as a pharmacological approach to treat obesity. J Obes. 2011;2011:431985.

    Article  PubMed  CAS  Google Scholar 

  83. Portillo P. Beneficial effects of quercetin on obesity and diabetes. Open Nutraceuticals J. 2011;4(1):189–98.

    Article  CAS  Google Scholar 

  84. Stepanic V, Gasparovic AC, Troselj KG, Amic D, Zarkovic N. Selected attributes of polyphenols in targeting oxidative stress in cancer. Curr Top Med Chem. 2015;15(5):496–509.

    Article  CAS  PubMed  Google Scholar 

  85. Kim H-S, Quon MJ, Kim J-A. New insights into the mechanisms of polyphenols beyond antioxidant properties; lessons from the green tea polyphenol, epigallocatechin 3-gallate. Redox Biol. 2014;2:187–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. da-Silva WS, Harney JW, Kim BW, Li J, Bianco SDC, Crescenzi A, et al. The small polyphenolic molecule kaempferol increases cellular energy expenditure and thyroid hormone activation. Diabetes. 2007;56(3):767–76.

    Article  CAS  PubMed  Google Scholar 

  87. Parish J, Perić M, Čipčić Paljetak H, Matijašić M, Verbanac D. Translating the Mediterranean diet: from chemistry to kitchen. Period Biol. 2011;113(3):303–10.

    Google Scholar 

  88. Bazzano LA, Serdula MK, Liu S. Dietary intake of fruits and vegetables and risk of cardiovascular disease. Curr Atheroscler Rep. 2003;5(6):492–9.

    Article  PubMed  Google Scholar 

  89. Benelli R, Venè R, Bisacchi D, Garbisa S, Albini A. Anti-invasive effects of green tea polyphenol epigallocatechin-3-gallate (EGCG), a natural inhibitor of metallo and serine proteases. Biol Chem. 2002;383(1):101–5.

    Article  CAS  PubMed  Google Scholar 

  90. Weisburger JH. Tea and health: the underlying mechanisms. Proc Soc Exp Biol Med. 1999;220(4):271–5.

    CAS  PubMed  Google Scholar 

  91. Bushman JL. Green tea and cancer in humans: a review of the literature. Nutr Cancer. 1998;31(3):151–9.

    Article  CAS  PubMed  Google Scholar 

  92. Naasani I, Oh-Hashi F, Oh-Hara T, Feng WY, Johnston J, Chan K, et al. Blocking telomerase by dietary polyphenols is a major mechanism for limiting the growth of human cancer cells in vitro and in vivo. Cancer Res. 2003;63(4):824–30.

    CAS  PubMed  Google Scholar 

  93. Zvetkova E, Wirleitner B, Tram NT, Schennach H, Fuchs D. Aqueous extracts of Crinum latifolium (L.) and Camellia sinensis show immunomodulatory properties in human peripheral blood mononuclear cells. Int Immunopharmacol. 2001;1(12):2143–50.

    Article  CAS  PubMed  Google Scholar 

  94. Lu Y-P, Lou Y-R, Xie J-G, Peng Q-Y, Liao J, Yang CS, et al. Topical applications of caffeine or (−)-epigallocatechin gallate (EGCG) inhibit carcinogenesis and selectively increase apoptosis in UVB-induced skin tumors in mice. Proc Natl Acad Sci U S A. 2002;99(19):12455–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Jatoi A, Ellison N, Burch PA, Sloan JA, Dakhil SR, Novotny P, et al. A phase II trial of green tea in the treatment of patients with androgen independent metastatic prostate carcinoma. Cancer. 2003;97(6):1442–6.

    Article  CAS  PubMed  Google Scholar 

  96. Senior K. Tea: a rich brew of anti-cancer magic bullets? Drug Discov Today. 2001;6(21):1079–80.

    Article  PubMed  Google Scholar 

  97. Lamy S, Gingras D, Béliveau R. Green tea catechins inhibit vascular endothelial growth factor receptor phosphorylation. Cancer Res. 2002;62(2):381–5.

    CAS  PubMed  Google Scholar 

  98. Bae M-J, Ishii T, Minoda K, Kawada Y, Ichikawa T, Mori T, et al. Albumin stabilizes (−)-epigallocatechin gallate in human serum: binding capacity and antioxidant property. Mol Nutr Food Res. 2009;53(6):709–15.

    Article  CAS  PubMed  Google Scholar 

  99. Suzuki J, Isobe M, Morishita R, Nagai R. Tea polyphenols regulate key mediators on inflammatory cardiovascular diseases. Mediat Inflamm. 2009;2009:494928.

    Article  CAS  Google Scholar 

  100. Wu L, Wang X, Xu W, Farzaneh F, Xu R. The structure and pharmacological functions of coumarins and their derivatives. Curr Med Chem. 2009;16(32):4236–60.

    Article  CAS  PubMed  Google Scholar 

  101. Huang W-Y, Cai Y-Z, Zhang Y. Natural phenolic compounds from medicinal herbs and dietary plants: potential use for cancer prevention. Nutr Cancer. 2010;62(1):1–20.

    Article  PubMed  CAS  Google Scholar 

  102. Sardari S, Mori Y, Horita K, Micetich RG, Nishibe S, Daneshtalab M. Synthesis and antifungal activity of coumarins and angular furanocoumarins. Bioorg Med Chem. 1999;7(9):1933–40.

    Article  CAS  PubMed  Google Scholar 

  103. Kayser O, Kolodziej H. Antibacterial activity of simple coumarins: structural requirements for biological activity. Zeitschrift für Naturforschung C J Biosci. 1999;54(3–4):169–74.

    Article  CAS  Google Scholar 

  104. Park H, Lee C-M, Jung ID, Lee JS, Jeong Y, Chang JH, et al. Quercetin regulates Th1/Th2 balance in a murine model of asthma. Int Immunopharmacol. 2009;9(3):261–7.

    Article  CAS  PubMed  Google Scholar 

  105. Lugli E, Ferraresi R, Roat E, Troiano L, Pinti M, Nasi M, et al. Quercetin inhibits lymphocyte activation and proliferation without inducing apoptosis in peripheral mononuclear cells. Leuk Res. 2009;33(1):140–50.

    Article  CAS  PubMed  Google Scholar 

  106. Boots AW, Haenen GRMM, Bast A. Health effects of quercetin: from antioxidant to nutraceutical. Eur J Pharmacol. 2008;585(2–3):325–37.

    Article  CAS  PubMed  Google Scholar 

  107. Kawai Y. β-Glucuronidase activity and mitochondrial dysfunction: the sites where flavonoid glucuronides act as anti-inflammatory agents. J Clin Biochem Nutr. 2014;54(3):145–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Erlund I, Kosonen T, Alfthan G, Mäenpää J, Perttunen K, Kenraali J, et al. Pharmacokinetics of quercetin from quercetin aglycone and rutin in healthy volunteers. Eur J Clin Pharmacol. 2000;56(8):545–53.

    Article  CAS  PubMed  Google Scholar 

  109. D’Andrea G. Quercetin: a flavonol with multifaceted therapeutic applications? Fitoterapia. 2015;106:256–71.

    Article  PubMed  CAS  Google Scholar 

  110. Zinsmeister HD, Becker H, Eicher T. Moose, eine Quelle biologisch aktiver Naturstoffe? Angew Chemie. 1991;103(2):134–51.

    Article  CAS  Google Scholar 

  111. Parnham MJ, Kesselring K. Rosmarinic acid. Drugs Future. 1985;10:756–7.

    Article  Google Scholar 

  112. Jelić D, Mildner B, Kostrun S, Nujić K, Verbanac D, Culić O, et al. Homology modeling of human Fyn kinase structure: discovery of rosmarinic acid as a new Fyn kinase inhibitor and in silico study of its possible binding modes. J Med Chem. 2007;50(6):1090–100.

    Article  PubMed  CAS  Google Scholar 

  113. Halpern GM. A celebration of wine: wine IS medicine. Inflammopharmacology. 2008;16(5):240–4.

    Article  CAS  PubMed  Google Scholar 

  114. Bertelli AAA, Das DK. Grapes, wines, resveratrol, and heart health. J Cardiovasc Pharmacol. 2009;54(6):468–76.

    Article  CAS  PubMed  Google Scholar 

  115. Marques FZ, Markus MA, Morris BJ. Resveratrol: cellular actions of a potent natural chemical that confers a diversity of health benefits. Int J Biochem Cell Biol. 2009;41(11):2125–8.

    Article  CAS  PubMed  Google Scholar 

  116. Beher D, Wu J, Cumine S, Kim KW, Lu S-C, Atangan L, et al. Resveratrol is not a direct activator of SIRT1 enzyme activity. Chem Biol Drug Des. 2009;74(6):619–24.

    Article  CAS  PubMed  Google Scholar 

  117. Hubbard BP, Gomes AP, Dai H, Li J, Case AW, Considine T, et al. Evidence for a common mechanism of SIRT1 regulation by allosteric activators. Science. 2013;339(6124):1216–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Fitó M, Cladellas M, de la Torre R, Martí J, Muñoz D, Schröder H, et al. Anti-inflammatory effect of virgin olive oil in stable coronary disease patients: a randomized, crossover, controlled trial. Eur J Clin Nutr. 2008;62(4):570–4.

    Article  PubMed  CAS  Google Scholar 

  119. Beauchamp GK, Keast RSJ, Morel D, Lin J, Pika J, Han Q, et al. Phytochemistry: ibuprofen-like activity in extra-virgin olive oil. Nature. 2005;437(7055):45–6.

    Article  CAS  PubMed  Google Scholar 

  120. Visioli F, Bernardini E. Extra virgin olive oil’s polyphenols: biological activities. Curr Pharm Des. 2011;17(8):786–804.

    Article  CAS  PubMed  Google Scholar 

  121. Cicerale S, Lucas L, Keast R. Biological activities of phenolic compounds present in virgin olive oil. Int J Mol Sci. 2010;11(2):458–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. De la Torre-Carbot K, Chávez-Servín JL, Jaúregui O, Castellote AI, Lamuela-Raventós RM, Nurmi T, et al. Elevated circulating LDL phenol levels in men who consumed virgin rather than refined olive oil are associated with less oxidation of plasma LDL. J Nutr. 2010;140(3):501–8.

    Article  PubMed  CAS  Google Scholar 

  123. Rodríguez-Morató J, Xicota L, Fitó M, Farré M, Dierssen M, de la Torre R. Potential role of olive oil phenolic compounds in the prevention of neurodegenerative diseases. Molecules. 2015;20(3):4655–80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Parnham MJ. The pharmaceutical potential of seleno-organic compounds. Expert Opin Invest Drugs. 1996;5:861–70.

    Article  CAS  Google Scholar 

  125. Inglot AD, Młochowski J, Zielińska-Jenczylik J, Piasecki E, Ledwoń TK, Kloc K. Seleno-organic compounds as immunostimulants: an approach to the structure-activity relationship. Arch Immunol Ther Exp. 1996;44(1):67–75.

    CAS  Google Scholar 

Download references

Acknowledgements

Co-authors D.V. and M.P. fully acknowledge the Croatian Science Foundation for the support of this work under the project MINUTE for IBD (HRZZ grant no IP-11-2013-5467).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Parnham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Parnham, M.J., Stepanić, V., Tafferner, N., Panek, M., Verbanac, D. (2019). Mild Plant and Dietary Immunomodulators. In: Parnham, M., Nijkamp, F., Rossi, A. (eds) Nijkamp and Parnham's Principles of Immunopharmacology. Springer, Cham. https://doi.org/10.1007/978-3-030-10811-3_28

Download citation

Publish with us

Policies and ethics