Skip to main content

Immunopharmacology of Prebiotics and Probiotics

  • Chapter
  • First Online:
Nijkamp and Parnham's Principles of Immunopharmacology

Abstract

The medicinal properties of various nutritional components have been appreciated since ancient times. Hippocrates (460–377 B.C.), for example, stated: “Let medicine be thy food and food be thy medicine.” Tea brewed from various fruits, shrubs, and trees containing natural salicylates has been consumed for pain relief since the Stone Age. Also the origin of the most well-known painkiller found in almost every home—aspirin—is a willow bark tree extract (see Chap. 33). These examples illustrate how nature can provide the chemical structure for a pharmaceutical. It is now appreciated that 70% of current drugs have their origin in chemical compounds found in plants, fruits, and vegetables. Modern medicinal chemists are capable of isolating and identifying these active chemical compounds and then modifying them to yield compounds with increased activity and less side effects.

Final manuscript submitted on January 09, 2018.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Selected Readings and Important Websites

References

  1. Bindels LB, et al. Towards a more comprehensive concept for prebiotics. Nat Rev Gastroenterol Hepatol. 2015;12(5):303–10.

    Article  CAS  PubMed  Google Scholar 

  2. Gibson GR, et al. Dietary modulation of the human colonic microbiota: updating the concept of prebiotics. Nutr Res Rev. 2004;17(2):259–75.

    Article  CAS  PubMed  Google Scholar 

  3. Gibson GR, Roberfroid MB. Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr. 1995;125(6):1401–12.

    Article  CAS  PubMed  Google Scholar 

  4. Hutkins RW, et al. Prebiotics: why definitions matter. Curr Opin Biotechnol. 2016;37:1–7.

    Article  CAS  PubMed  Google Scholar 

  5. Louis P, Flint HJ, Michel C. How to manipulate the microbiota: prebiotics. Adv Exp Med Biol. 2016;902:119–42.

    Article  PubMed  Google Scholar 

  6. Pineiro M, et al. FAO Technical meeting on prebiotics. J Clin Gastroenterol. 2008;42(Suppl 3 Pt 2):S156–9.

    Article  PubMed  Google Scholar 

  7. Schrezenmeir J, de Vrese M. Probiotics, prebiotics, and synbiotics--approaching a definition. Am J Clin Nutr. 2001;73(2 Suppl):361S–4S.

    Article  CAS  PubMed  Google Scholar 

  8. Verspreet J, et al. A critical look at prebiotics within the dietary fiber concept. Annu Rev Food Sci Technol. 2016;7:167–90.

    Article  CAS  PubMed  Google Scholar 

  9. Gibson GR, et al. Expert consensus document: the International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol. 2017;14(8):491–502.

    Article  PubMed  Google Scholar 

  10. Joint FAO/WHO Expert Consultation. Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. 2001. Available from: http://www.who.int/foodsafety/publications/fs_management/en/probiotics.pdf.

  11. Bouskra D, et al. Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis. Nature. 2008;456(7221):507–10.

    Article  CAS  PubMed  Google Scholar 

  12. Martin R, et al. Early-life events, including mode of delivery and type of feeding, siblings and gender, shape the developing gut microbiota. PLoS One. 2016;11(6):e0158498.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Knoop, K.A., et al., Microbial antigen encounter during a preweaning interval is critical for tolerance to gut bacteria. Sci Immunol. 2017;2(18). https://doi.org/10.1126/sciimmunol.aao1314.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Garcia-Pena C, et al. Microbiota and aging. A review and commentary. Arch Med Res. 2017;48(8):681–9.

    Article  PubMed  Google Scholar 

  15. Ruiz L, et al. Bifidobacteria and their molecular communication with the immune system. Front Microbiol. 2017;8:2345.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Moro G, et al. Dosage-related bifidogenic effects of galacto- and fructooligosaccharides in formula-fed term infants. J Pediatr Gastroenterol Nutr. 2002;34(3):291–5.

    Article  CAS  PubMed  Google Scholar 

  17. van’t Land, B., G. Boehm, and J. Garssen, Breast milk: components with immune modulating potential and their possible role in immune mediated disease resistance, in Dietary components and immune function, R.R. Watson, S. Zibadi, and V.R. Preedy, Editors. 2010. p. 685. Humana Press, Totowa, NJ

    Google Scholar 

  18. Sartor RB. Microbial influences in inflammatory bowel diseases. Gastroenterology. 2008;134(2):577–94.

    Article  CAS  PubMed  Google Scholar 

  19. Strober W, Fuss I, Mannon P. The fundamental basis of inflammatory bowel disease. J Clin Invest. 2007;117(3):514–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Clavel T, Haller D. Molecular interactions between bacteria, the epithelium, and the mucosal immune system in the intestinal tract: implications for chronic inflammation. Curr Issues Intest Microbiol. 2007;8(2):25–43.

    CAS  PubMed  Google Scholar 

  21. Kassinen A, et al. The fecal microbiota of irritable bowel syndrome patients differs significantly from that of healthy subjects. Gastroenterology. 2007;133(1):24–33.

    Article  CAS  PubMed  Google Scholar 

  22. Ohman L, et al. B-cell activation in patients with irritable bowel syndrome (IBS). Neurogastroenterol Motil. 2009;21(6):644–50, e27.

    Article  CAS  PubMed  Google Scholar 

  23. Sandek A, Anker SD, von Haehling S. The gut and intestinal bacteria in chronic heart failure. Curr Drug Metab. 2009;10(1):22–8.

    Article  CAS  PubMed  Google Scholar 

  24. Hofer U, Speck RF. Disturbance of the gut-associated lymphoid tissue is associated with disease progression in chronic HIV infection. Semin Immunopathol. 2009;31(2):257–66.

    Article  CAS  PubMed  Google Scholar 

  25. White JF. Intestinal pathophysiology in autism. Exp Biol Med (Maywood). 2003;228(6):639–49.

    Article  CAS  Google Scholar 

  26. Wopereis H, et al. Intestinal microbiota in infants at high risk for allergy: effects of prebiotics and role in eczema development. J Allergy Clin Immunol. 2018;141(4):1334–42.e5.

    Article  CAS  PubMed  Google Scholar 

  27. Hougee S, et al. Oral treatment with probiotics reduces allergic symptoms in ovalbumin-sensitized mice: a bacterial strain comparative study. Int Arch Allergy Immunol. 2010;151(2):107–17.

    Article  CAS  PubMed  Google Scholar 

  28. Scholtens PA, et al. Fecal secretory immunoglobulin A is increased in healthy infants who receive a formula with short-chain galacto-oligosaccharides and long-chain fructo-oligosaccharides. J Nutr. 2008;138(6):1141–7.

    Article  CAS  PubMed  Google Scholar 

  29. Schouten B, et al. Cow milk allergy symptoms are reduced in mice fed dietary synbiotics during oral sensitization with whey. J Nutr. 2009;139(7):1398–403.

    Article  CAS  PubMed  Google Scholar 

  30. Sokol H, et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci U S A. 2008;105(43):16731–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Turroni F, et al. Glycan utilization and cross-feeding activities by bifidobacteria. Trends Microbiol. 2018;26(4):339–50.

    Article  CAS  PubMed  Google Scholar 

  32. Banks E, et al. Is psychological distress in people living with cancer related to the fact of diagnosis, current treatment or level of disability? Findings from a large Australian study. Med J Aust. 2010;193(5 Suppl):S62–7.

    PubMed  Google Scholar 

  33. Yang Y, Tian J, Yang B. Targeting gut microbiome: a novel and potential therapy for autism. Life Sci. 2018;194:111–9.

    Article  CAS  PubMed  Google Scholar 

  34. Kang DW, et al. Differences in fecal microbial metabolites and microbiota of children with autism spectrum disorders. Anaerobe. 2018;49:121–31.

    Article  CAS  PubMed  Google Scholar 

  35. Petursdottir DH, et al. Early-life human microbiota associated with childhood allergy promotes the T helper 17 axis in mice. Front Immunol. 2017;8:1699.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Van der Leek AP, Yanishevsky Y, Kozyrskyj AL. The kynurenine pathway as a novel link between allergy and the gut microbiome. Front Immunol. 2017;8:1374.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Arrieta MC, et al. Associations between infant fungal and bacterial dysbiosis and childhood atopic wheeze in a nonindustrialized setting. J Allergy Clin Immunol. 2018;142(2):424–434.e10.

    Article  PubMed  PubMed Central  Google Scholar 

  38. El Hage R, Hernandez-Sanabria E, Van de Wiele T. Emerging trends in “smart probiotics”: functional consideration for the development of novel health and industrial applications. Front Microbiol. 2017;8:1889.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Chilton CH, Pickering DS, Freeman J. Microbiological factors affecting Clostridium difficile recurrence. Clin Microbiol Infect. 2018;24(5):476–82.

    Article  CAS  PubMed  Google Scholar 

  40. Corr SC, et al. Bacteriocin production as a mechanism for the antiinfective activity of Lactobacillus salivarius UCC118. Proc Natl Acad Sci U S A. 2007;104(18):7617–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ryan KA, et al. Strain-specific inhibition of Helicobacter pylori by Lactobacillus salivarius and other lactobacilli. J Antimicrob Chemother. 2008;61(4):831–4.

    Article  CAS  PubMed  Google Scholar 

  42. Mazmanian SK, Round JL, Kasper DL. A microbial symbiosis factor prevents intestinal inflammatory disease. Nature. 2008;453(7195):620–5.

    Article  CAS  PubMed  Google Scholar 

  43. Lee J, Seto D, Bielory L. Meta-analysis of clinical trials of probiotics for prevention and treatment of pediatric atopic dermatitis. J Allergy Clin Immunol. 2008;121(1):116–121.e11.

    Article  PubMed  Google Scholar 

  44. Boge T, et al. A probiotic fermented dairy drink improves antibody response to influenza vaccination in the elderly in two randomised controlled trials. Vaccine. 2009;27(41):5677–84.

    Article  CAS  PubMed  Google Scholar 

  45. Llewellyn, A. and A. Foey, Probiotic modulation of innate cell pathogen sensing and signaling events. Nutrients. 2017;9(10). https://doi.org/10.3390/nu9101156.

    Article  PubMed Central  CAS  Google Scholar 

  46. Buck MD, et al. Metabolic instruction of immunity. Cell. 2017;169(4):570–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Foligne B, et al. A key role of dendritic cells in probiotic functionality. PLoS One. 2007;2(3):e313.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Macpherson AJ, Geuking MB, McCoy KD. Immune responses that adapt the intestinal mucosa to commensal intestinal bacteria. Immunology. 2005;115(2):153–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Jeurink PV, et al. Human milk: a source of more life than we imagine. Benef Microbes. 2013;4(1):17–30.

    Article  CAS  PubMed  Google Scholar 

  50. Carvalho R II, et al. Breastfeeding increases microbial community resilience. J Pediatr (Rio J). 2018;94(3):258–67.

    Article  Google Scholar 

  51. Grabarics M, et al. Analytical characterization of human milk oligosaccharides - potential applications in pharmaceutical analysis. J Pharm Biomed Anal. 2017;146:168–78.

    Article  CAS  PubMed  Google Scholar 

  52. Thongaram T, et al. Human milk oligosaccharide consumption by probiotic and human-associated bifidobacteria and lactobacilli. J Dairy Sci. 2017;100(10):7825–33.

    Article  CAS  PubMed  Google Scholar 

  53. Laucirica DR, et al. Milk oligosaccharides inhibit human rotavirus infectivity in MA104 cells. J Nutr. 2017;147(9):1709–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Xiao L, et al. Early-life nutritional factors and mucosal immunity in the development of autoimmune diabetes. Front Immunol. 2017;8:1219.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Yamashita A, et al. Reverse reaction of Aspergillus niger APC-9319 alpha-galactosidase in a supersaturated substrate solution: production of alpha-linked galactooligosaccharide (alpha-GOS). Biosci Biotechnol Biochem. 2005;69(7):1381–8.

    Article  CAS  PubMed  Google Scholar 

  56. Akbari P, et al. Characterizing microbiota-independent effects of oligosaccharides on intestinal epithelial cells: insight into the role of structure and size: structure-activity relationships of non-digestible oligosaccharides. Eur J Nutr. 2017;56(5):1919–30.

    Article  CAS  PubMed  Google Scholar 

  57. Abe C, et al. Effects of alpha-linked galactooligosaccharide on adjuvant-induced arthritis in Wistar rats and type II collagen-induced arthritis in DBA/1J mice. Int J Tissue React. 2004;26(3–4):65–73.

    CAS  PubMed  Google Scholar 

  58. Sonoyama K, et al. Allergic airway eosinophilia is suppressed in ovalbumin-sensitized Brown Norway rats fed raffinose and alpha-linked galactooligosaccharide. J Nutr. 2005;135(3):538–43.

    Article  CAS  PubMed  Google Scholar 

  59. Watanabe H, et al. Reduction of allergic airway eosinophilia by dietary raffinose in Brown Norway rats. Br J Nutr. 2004;92(2):247–55.

    Article  CAS  PubMed  Google Scholar 

  60. Coussement PA. Inulin and oligofructose: safe intakes and legal status. J Nutr. 1999;129(7 Suppl):1412S–7S.

    Article  CAS  PubMed  Google Scholar 

  61. van Loo J, et al. On the presence of inulin and oligofructose as natural ingredients in the western diet. Crit Rev Food Sci Nutr. 1995;35(6):525–52.

    Article  PubMed  Google Scholar 

  62. Mitsuoka T, Hidaka H, Eida T. Effect of fructo-oligosaccharides on intestinal microflora. Nahrung. 1987;31(5–6):427–36.

    Article  CAS  PubMed  Google Scholar 

  63. Cooper PD. Solid phase activators of the alternative pathway of complement and their use in vivo. In: Sim RB, editor. Activators and inhibitors of complement. Dordrecht: Kluwer Academic; 1993. p. 99–106.

    Google Scholar 

  64. Cooper PD, Carter M. Anti-complementary action of polymorphic “solubility forms” of particulate inulin. Mol Immunol. 1986;23(8):895–901.

    Article  CAS  PubMed  Google Scholar 

  65. Silva DG, Cooper PD, Petrovsky N. Inulin-derived adjuvants efficiently promote both Th1 and Th2 immune responses. Immunol Cell Biol. 2004;82(6):611–6.

    Article  CAS  PubMed  Google Scholar 

  66. Lara-Villoslada F, et al. Short-chain fructooligosaccharides, in spite of being fermented in the upper part of the large intestine, have anti-inflammatory activity in the TNBS model of colitis. Eur J Nutr. 2006;45(7):418–25.

    Article  CAS  PubMed  Google Scholar 

  67. Buddington KK, Donahoo JB, Buddington RK. Dietary oligofructose and inulin protect mice from enteric and systemic pathogens and tumor inducers. J Nutr. 2002;132(3):472–7.

    Article  CAS  PubMed  Google Scholar 

  68. Hosono A, et al. Dietary fructooligosaccharides induce immunoregulation of intestinal IgA secretion by murine Peyer’s patch cells. Biosci Biotechnol Biochem. 2003;67(4):758–64.

    Article  CAS  PubMed  Google Scholar 

  69. Bakker-Zierikzee AM, et al. Effects of infant formula containing a mixture of galacto- and fructo-oligosaccharides or viable Bifidobacterium animalis on the intestinal microflora during the first 4 months of life. Br J Nutr. 2005;94(5):783–90.

    Article  CAS  PubMed  Google Scholar 

  70. Bakker-Zierikzee AM, et al. Faecal SIgA secretion in infants fed on pre- or probiotic infant formula. Pediatr Allergy Immunol. 2006;17(2):134–40.

    Article  CAS  PubMed  Google Scholar 

  71. Knol J, et al. Colon microflora in infants fed formula with galacto- and fructo-oligosaccharides: more like breast-fed infants. J Pediatr Gastroenterol Nutr. 2005;40(1):36–42.

    Article  CAS  PubMed  Google Scholar 

  72. Scholtens PA, et al. Bifidogenic effects of solid weaning foods with added prebiotic oligosaccharides: a randomised controlled clinical trial. J Pediatr Gastroenterol Nutr. 2006;42(5):553–9.

    Article  CAS  PubMed  Google Scholar 

  73. van Hoffen E, et al. A specific mixture of short-chain galacto-oligosaccharides and long-chain fructo-oligosaccharides induces a beneficial immunoglobulin profile in infants at high risk for allergy. Allergy. 2009;64(3):484–7.

    Article  PubMed  CAS  Google Scholar 

  74. Boehm G, et al. Prebiotics and immune responses. J Pediatr Gastroenterol Nutr. 2004;39(Suppl 3):S772–3.

    Article  PubMed  Google Scholar 

  75. Coppa GV, et al. Prebiotics in human milk: a review. Dig Liver Dis. 2006;38(Suppl 2):S291–4.

    Article  PubMed  Google Scholar 

  76. Morrow AL, Rangel JM. Human milk protection against infectious diarrhea: implications for prevention and clinical care. Semin Pediatr Infect Dis. 2004;15(4):221–8.

    Article  PubMed  Google Scholar 

  77. Costea PI, et al. Enterotypes in the landscape of gut microbial community composition. Nat Microbiol. 2018;3(1):8–16.

    Article  CAS  PubMed  Google Scholar 

  78. Artis D. Epithelial-cell recognition of commensal bacteria and maintenance of immune homeostasis in the gut. Nat Rev Immunol. 2008;8(6):411–20.

    Article  CAS  PubMed  Google Scholar 

  79. Hyun JG, et al. Anti-interferon-inducible chemokine, CXCL10, reduces colitis by impairing T helper-1 induction and recruitment in mice. Inflamm Bowel Dis. 2005;11(9):799–805.

    Article  PubMed  Google Scholar 

  80. Hormannsperger G, et al. Post-translational inhibition of IP-10 secretion in IEC by probiotic bacteria: impact on chronic inflammation. PLoS One. 2009;4(2):e4365.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Sansonetti PJ. War and peace at mucosal surfaces. Nat Rev Immunol. 2004;4(12):953–64.

    Article  CAS  PubMed  Google Scholar 

  82. Mahida YR. The key role of macrophages in the immunopathogenesis of inflammatory bowel disease. Inflamm Bowel Dis. 2000;6(1):21–33.

    Article  CAS  PubMed  Google Scholar 

  83. Welte T, et al. STAT3 deletion during hematopoiesis causes Crohn’s disease-like pathogenesis and lethality: a critical role of STAT3 in innate immunity. Proc Natl Acad Sci U S A. 2003;100(4):1879–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kim SO, et al. G-CSF-mediated inhibition of JNK is a key mechanism for Lactobacillus rhamnosus-induced suppression of TNF production in macrophages. Cell Microbiol. 2006;8(12):1958–71.

    Article  CAS  PubMed  Google Scholar 

  85. Danne C, et al. A large polysaccharide produced by Helicobacter hepaticus induces an anti-inflammatory gene signature in macrophages. Cell Host Microbe. 2017;22(6):733–745.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Belkacem N, et al. Lactobacillus paracasei feeding improves immune control of influenza infection in mice. PLoS One. 2017;12(9):e0184976.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Fernandez L, et al. Prevention of infectious mastitis by oral administration of Lactobacillus salivarius PS2 during late pregnancy. Clin Infect Dis. 2016;62(5):568–73.

    Article  CAS  PubMed  Google Scholar 

  88. Ro ADB, et al. Reduced Th22 cell proportion and prevention of atopic dermatitis in infants following maternal probiotic supplementation. Clin Exp Allergy. 2017;47(8):1014–21.

    Article  CAS  PubMed  Google Scholar 

  89. Simpson MR, et al. Breastfeeding-associated microbiota in human milk following supplementation with Lactobacillus rhamnosus GG, Lactobacillus acidophilus La-5, and Bifidobacterium animalis subspecies lactis Bb-12. J Dairy Sci. 2018;101(2):889–99.

    Article  CAS  PubMed  Google Scholar 

  90. van Baarlen P, et al. Differential NF-kappaB pathways induction by Lactobacillus plantarum in the duodenum of healthy humans correlating with immune tolerance. Proc Natl Acad Sci U S A. 2009;106(7):2371–6.

    Article  PubMed  PubMed Central  Google Scholar 

  91. O’Toole PW, Flemer B. From culture to high-throughput sequencing and beyond: a layperson’s guide to the “omics” and diagnostic potential of the microbiome. Gastroenterol Clin N Am. 2017;46(1):9–17.

    Article  Google Scholar 

  92. Munblit D, et al. Human milk and allergic diseases: an unsolved puzzle. Nutrients. 2017;9(8):E894.

    Article  PubMed  CAS  Google Scholar 

  93. Conlon MA, Bird AR. The impact of diet and lifestyle on gut microbiota and human health. Nutrients. 2014;7(1):17–44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Wilson ID, Nicholson JK. The role of gut microbiota in drug response. Curr Pharm Des. 2009;15(13):1519–23.

    Article  CAS  PubMed  Google Scholar 

  95. Ebbels TM, et al. Prediction and classification of drug toxicity using probabilistic modeling of temporal metabolic data: the consortium on metabonomic toxicology screening approach. J Proteome Res. 2007;6(11):4407–22.

    Article  CAS  PubMed  Google Scholar 

  96. Nicholson JK, Wilson ID. Opinion: understanding ‘global’ systems biology: metabonomics and the continuum of metabolism. Nat Rev Drug Discov. 2003;2(8):668–76.

    Article  CAS  PubMed  Google Scholar 

  97. Obrenovich M, et al. The co-metabolism within the gut-brain metabolic interaction: potential targets for drug treatment and design. CNS Neurol Disord Drug Targets. 2016;15(2):127–34.

    Article  CAS  PubMed  Google Scholar 

  98. Slyepchenko A, et al. Gut microbiota, bacterial translocation, and interactions with diet: pathophysiological links between major depressive disorder and non-communicable medical comorbidities. Psychother Psychosom. 2017;86(1):31–46.

    Article  PubMed  Google Scholar 

  99. Schouten B. Cow’s milk allerg - immune modulation by dietary intervention, Pharmacology and pathophysiology. Utrecht: University of Utrecht; 2009. p. 217.

    Google Scholar 

  100. Vos P. Preclinical studies on the immune-modulatory effects of dietary oligosaccharides, Medical microbiology. Maastricht: Maastricht University; 2008. p. 227.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johan Garssen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jeurink, P.V., Toutounchi, N.S., Acyabar, H.J., Folkerts, G., Garssen, J. (2019). Immunopharmacology of Prebiotics and Probiotics. In: Parnham, M., Nijkamp, F., Rossi, A. (eds) Nijkamp and Parnham's Principles of Immunopharmacology. Springer, Cham. https://doi.org/10.1007/978-3-030-10811-3_27

Download citation

Publish with us

Policies and ethics